
Project no. 732505
Project acronym: LightKone
Project title: Lightweight computation for networks at the edge

D7.1: Evaluation

Deliverable no.: D7.1
Title: Evaluation
Due date of deliverable: July 6, 2018
Actual submission date: January 15, 2019
Lead contributor: Scality
Revision: 2.0
Dissemination level: PU
Start date of project: January 1, 2017
Duration: 36 months

This project has received funding from the H2020 Programme of the European Union

LightKone Deliverable D7.1(v2.0), July 6, 2018

Revision Information:

Date Ver Change Responsible
06/07/2018 1.0 Final Version Scality
15/01/2019 2.0 Final Revised Version Scality

The complete git-based changes tracking details for this document are available at the
https://github.com/LightKone/WP7 private repository.

Contributors:

Contributor Institution
Bradley King Scality
Dimitrios Vasilas Scality
Georges Younes INESC TEC
Manuel Bravo UCL
Christopher Meiklejohn UCL & IST/INESC-ID
Annette Bieniusa TUKL
Igor Zavalyshyn IST/INESC-ID
Paulo Sérgio Almeida INESC TEC
Sébastien Merle STRITZINGER
Peer Stritzinger STRITZINGER
Stefan Timm STRITZINGER
João Leitão NOVA
Pedro Ákos Costa NOVA
Carla Ferreira NOVA
Nuno Preguiça NOVA
Roger Pueyo Centelles UPC
Felix Freitag UPC
Leandro Navarro UPC
Roc Messeguer UPC
Giorgos Kostopoulos GLUK
Kostis Kounadis GLUK

LightKone D7.1(v2.0), July 6, 2018, Page 2

https://github.com/LightKone/WP7

Contents

1 Introduction 3
1.0.1 Summary of Deliverable Revisions 3

1.1 Relation to other WPs . 4
1.2 Topics discussed in this report . 4
1.3 Methodologies . 5

2 Evaluation plans for the Use Cases 7
2.1 Gluk Specific Evaluations . 7

2.1.1 Use case overview . 7
2.1.2 Evaluation Objectives . 7
2.1.3 Experiment Design . 8

(a) Timeline . 8
(b) Experiment description 8

2.2 UPC’s specific evaluations . 9
2.2.1 Performance evaluation objectives 9

(a) Metrics and criteria 10
2.2.2 Edge node hardware selection 12

(a) x86-based Single-Board-Computers (SBCs) and mini-
PCs . 12

(b) ARM-based SBCs . 13
2.2.3 Testbed for experimental evaluation 15

2.3 Scality Specific Evaluations . 16
2.3.1 Use case overview . 17
2.3.2 Evaluation Objectives . 18
2.3.3 Experiment Design . 20

(a) Architecture . 20
(b) Experiment Description and metrics 20
(c) Tools . 21

2.4 Stritzinger Specific Evaluations . 21
2.4.1 Use case overview . 21

().1 Distributed RFID Cache 21
2.4.2 Evaluation Objectives . 22
2.4.3 Experiment Design . 23

(a) Timeline . 23
(b) Architecture . 23
(c) Experiment Description 23

3

CONTENTS

(d) Further Contributions 25
(d).1 Smart Metering Use Case 25
(d).2 GRiSP . 25
(d).3 LASP on GRiSP 25
(d).4 Antidote on GRiSP 25
(d).5 GRiSP for research outside of LightKone . . 25
(d).6 GRiSP for education 26
(d).7 Improvements to Erlang transparent distribu-

tion protocol 26
(d).8 IEEE 802.15.4 Protocol Stack for GRiSP . . . 26

3 Evaluations in an Academic Context 27
3.1 Legion . 27

(a) Designing Applications 28
(b) Experimental evaluation 29

3.2 Antidote with Non-uniform Replication 32
3.2.1 Simulation . 32

(a) Top-K with removals 33
(b) Top Sum . 34

3.2.2 AntidoteDB . 35
(a) Dissemination overhead and replica sizes 35

(a).1 Top-K . 35
(a).2 Top-K with removals 36

(b) Scalability . 37
(b).1 Top-K . 38
(b).2 Top-K with removals 39

3.3 Yggdrasil . 40
3.3.1 Protocol and Application Implementation 40

(a) Experimental Methodology 40
(a).1 Routing Protocol 40
(a).2 Test Application 40

(b) Experimental Results 41
(b).1 Routing Protocol 41
(b).2 Test Application 41

3.3.2 Yggdrasil Overhead . 42
(a) Experimental Methodology 42
(b) Experimental Results 42

3.4 Mirage . 43
3.4.1 Experimental Methodology . 44
3.4.2 Experimental Results . 45

(a) Disperse Deployment 46
(b) Dense Deployment with Overlay 48

(b).1 Fault-Free Scenario 48
(b).2 Dynamic Input Values 48
(b).3 Node and Link Failures 49

LightKone D7.1(v2.0), July 6, 2018, Page 4

CONTENTS

4 An Overview of Formal Evaluations 51
4.1 Tools for Formal Models . 51

4.1.1 TLA+ and TLC . 51
4.1.2 Abstract Execution Formulations 52
4.1.3 Timed Automata Formalization 52

5 Evaluations and Security 53

6 Summary 55

Bibliography 57

A List of acronyms 59

LightKone D7.1(v2.0), July 6, 2018, Page 5

Executive Summary

This revised version of deliverable WP 7.1 presents the status of the evaluation phase of
the LightKone project including certain changes since the initial submission; the list of
changes have been noted in the introduction. Evaluation of the work performed is a key
requirement of any successful project. While the project is only at the half-way point,
and a number of the components are not yet available for evaluation, several evaluations
have already been performed, notably on the academic research components. Some pre-
liminary outputs of the formalization phase will also be discussed here. This report will
primarily outline the plans in place for the evaluation of each of the use cases. Finally,
plans for security evaluation will be discussed briefly.

Evaluation of the use cases
Following the formal model checking phase, actual implementations will be evaluated.
The first step is to determine that the methods developed give the correct or expected
results. Next the applicability of the methods in real world situations must be evaluated.
The evaluations of the defined use cases are currently mostly at the planning stage since
their implementations are still underway.

After this phase, we will pursue the determination of the scalability and applicability
of the solutions. The Gluk, Guifi, and Stritzinger use-cases will concentrate more on
feasibility and reliability while the Scality use-case will more on scalability and use of
resources. One of the key motivations behind distributed and edge solutions is the ability
to manage very large pools of users, and correspondingly very large collections of data
or devices. The scalability of the system is thus a key element of a successful design, but
it is often difficult, costly or simply impossible to test many systems at scale, except by
deploying them in the real world. For the purpose of this evaluation, efforts will be made
to determine the scalability of the platform, principally by using an increasing number of
distributed servers and workloads to identify scaling limits in the models chosen.

Evaluation of formal models
Distributed systems can be extremely complex, and their behavior in the presence of
partitions and different types of errors often become too difficult to predict using sim-
ple reasoning methods. In order to investigate the correctness of the models that have
been chosen, we implemented formal modeling techniques. This type of approach is in-
creasingly relevant as distributed systems become more and more common and mission

1

CONTENTS

critical. These models include tools such as TLA+ as well as abstract execution formula-
tions. The use of these methods in guiding the evaluations is covered briefly in this report.
As will be discussed, the models have provided useful insights for the implementation
phase.

Evaluations in an Academic Context
A number of tools are being development in the context of the Lightkone project and will
be used in the different use cases. The tools have been evaluated in realistic situations.
These include tests of Legion, AntidoteDB with non-uniform replication, Yggdrasil and
Mirage.

Evaluation of security at the edge
The scaling of the proposed solutions is important, but verification of the security is also
critical. Effort has been invested to apply industry security practices and to study and
ascertain the privacy impacts for the different use cases. The identification of security
vectors and vulnerabilities have been discussed in WP3.2 and further actions will be
taken as resources allow during the evaluation phase.

LightKone D7.1(v2.0), July 6, 2018, Page 2

Chapter 1

Introduction

With the immense volumes of data generated and computed at data centers and cloud
servers, it can be useful to relocate some storage and computation towards the edge of
the network. Some benefits are: reduction of the load on the data centers, reduction of the
network traffic, and improved availability and responsiveness. However, the edge com-
puting approach brings its own challenges, notably: scalability, heterogeneity, resilience,
and diverse security concerns. In WP7, we evaluate the methods to determine viability in
real world situations. Here we report the evaluation that has been done and future plans.
WP7’s primary goal is to test and evaluate the work of the project.

1.0.1 Summary of Deliverable Revisions
This deliverable has been revised since its original submission to incorporate comments
and modifications requested by the European Commission Reviewers. The main changes
made to the deliverable are as follows:

• The document has been partially restructured to emphasise the key areas of con-
cern, notably by moving the material regarding the experimental evaluations of the
use-cases earlier in the document.

• We have added detail regarding targets for the experimental evaluations of the use
cases to better define success criteria.

• The revised Gluk use case is presented briefly, with targets for the revised experi-
mental evaluations.

• The Stritzinger use case has been clarified due to new inputs from a potential cus-
tomer; the evaluation plans have been rewritten.

• Additional evaluations on Yggdrasil resource overheads have been performed and
are reported.

• We have added additional explanations regarding the topic of security and which
evaluations are feasible within the project timelines.

3

CHAPTER 1. INTRODUCTION

1.1 Relation to other WPs
As WP7 seeks to evaluate the work done in the other packages, so the relations between
the diverse work packages is fairly obvious. The efforts of WP3 to develop a general
purpose runtime will be tested and evaluated as the components of the runtime will be
specifically evaluated within the framework of the use cases of WP2. Further, we will
incorporate findings from the security analysis presented in D3.1. to complement the
viability and performance evaluation. Within WP2, the application of formal methods
to specific use cases for the evaluation of correctness have been pursued. Efforts in this
direction are presented in the deliverable for WP 2.2. The somewhat more theoretical
WP4, which seeks to provide formal semantics for the verification and implementation
of efficient distributed and edge computing models, will be evaluated to verify to what ex-
tent the formalization does indeed cover the challenges at hand. Additionally, the model
checking approaches pursued within the framework of WP4 are in fact components of
the evaluation to the extent that they are able to formally validate the approaches taken
in other work packages. WP5 and WP6, which represent the efforts specifically directed
to the light and heavy edge use cases, are notably the focus of the field evaluations, with
the field applications being defined by the WP2. One of the additional evaluation efforts
is the investigation of issues of security; this feeds specifically into the outputs of WP1.
Finally, the evaluations which measure the success or failure of the methods developed
will largely impact the possibilities of WP8 where efforts are made to draw commercial
benefit from the project. To the extent that the evaluations demonstrate advantages over
existing or classical methods, the project will prove more or less interesting commer-
cially. This emphasis will be noted in the choices made to perform the evaluations, to
assure that the evaluations test pertinent criteria to determine the commercial viability of
the work.

1.2 Topics discussed in this report
This report briefly discusses the general methodologies that are planned for WP7. Then
the planning and initial feedback of the actual physical evaluations will be presented for
each of the different use cases presented in WP2. This is the key effort of the evaluation
phase of the project and in many cases awaits advancement of WP3 where runtime ele-
ments must be provided for the actual testing to take place. In these cases, the planning of
the tests is presented. The Gluk evaluations resemble what is most commonly considered
an IoT usage where sensor collect data and a centralized or cloud platform uses collected
data for decision and policy making. The ability to push more of the intelligence into
the network in order to improve responsiveness, reliability and ease of installation will
be investigated as compared to the more classical centralized data collection approach.
The Guifi evaluation is particularly interesting, because it will occur very close to a real
operating environment, with a variety of edge devices to determine the applicability of
AntidoteDB instances running with limited resources and heterogenous network capa-
bilities. The Scality evaluation seeks to compare the innovative edge based approaches
to more traditional centralized architectures for indexing. The more distributed index-
ing scenarios represent opportunities for more diverse deployments and better liveliness

LightKone D7.1(v2.0), July 6, 2018, Page 4

CHAPTER 1. INTRODUCTION

of queries across geographically distributed storage systems. The exact scenario that the
Stitzinger evaluations will evaluate is not currently decided. It is intended that a customer
specific usage will drive the final choice. While this is more complex from a planning
perspective, it greatly increases the chances that the outcomes of the evaluation will be
productized and produce commercial benefits soon after the pilot phase. The most likely
scenarios are presented here with the work that is in development of the tools for the
evaluations.

This is followed with details of the evaluations that have already been performed,
mostly within the academic community in ongoing research in the context of the project.
The ongoing formal model checking investigations will be discussed. They are explained
in more technical detail in deliverables for D2.2 and D4.2, but within the framework of
evaluation they are interesting because they permit the viability of certain approaches to
be tested without requiring complex physical test setups. One of the key advantages of a
formal evaluation is the ability to investigate a much greater part of the state space than
would be possible in physical testing with the obvious limits of time and resources.

Finally, we refer to the ongoing security evaluations, both in terms of the high-level
evaluations that have thus far taken place along with the plans being made for more
complete security tests in certain of the use cases from WP2.

1.3 Methodologies
Multiple approaches to evaluations can be imagined and within the project, a number of
different types of evaluations will be performed. In some of the use cases, notably Guifi,
the systems are already in production and field testing can be done in a fairly straightfor-
ward manner. In others, the viability of future projects could potentially be brought into
question depending on the outcome of initial tests, so the tests must be considered care-
fully and verification made during the testing phases that the tests represent the current
or future reality.

As has been mentioned, the key areas under evaluation will be the following:

• Correctness of the pilot implementation in ideal conditions.

• Robustness of the solution to expected families of failures.

• Comparison of the solution to more traditional methods.

• Indications of the viability of the solution.

Evaluation of scalability
An important objective for distributed and edge solutions is to effectively manage very
large pools of users and, hence, very large collections of data or devices. However it is
often difficult to test the systems at sufficient scale. Resources have been requested and
set aside for testing at scale, efforts will be made to make efficient use of the available
resources.

The principal evaluation methods can be summarised as follows:

LightKone D7.1(v2.0), July 6, 2018, Page 5

CHAPTER 1. INTRODUCTION

• Increasing the number of clients while monitoring the response times to determines
the linearity of the system’s scalability. Ideally, the system resource usage increases
linearly while maintaining responsiveness.

• In addition to verifying linearity, it is important to determine limits of scale if this
type of test is practically possible. Many systems will see limits in scale that were
not initially expected. It is likely unrealistic that tests within the framework of the
project will fully confirm the ultimate scalability of the chosen approaches.

• Evaluating and comparing resource usage and latency between methods to measure
overall efficiency.

The outcomes of these various use case evaluations will be presented in future deliv-
erables, notably D7.2 as well as feedback that should be provided to the work-packages
5 and 6 for light and heavy edge. Depending on the level of success of certain of the
evaluations they could feed into the final outputs of the work-package 8 to motivate the
execution of a concrete business plan.

LightKone D7.1(v2.0), July 6, 2018, Page 6

Chapter 2

Evaluation plans for the Use Cases

2.1 Gluk Specific Evaluations
In this section, we provide specifics of the revised Gluk use-case evaluation plan.

2.1.1 Use case overview
We present a sensor array for precision agriculture with actuators to achieve management
goals for irrigation. The core management ability must be completely autonomous (no
need for PC or cloud control) and as low-cost as possible (again, no need for PC or cloud
connectivity, which can be too expensive for realistic deployments). For this reason
the management system should run on the sensor array itself. The deployment of the
sensor nodes should be performed by the farmer, so the network must have zero-touch-
configuration capabilities. The basic management should be done by the sensor array
itself. Higher-level management goals can be added by external systems, such as PCs or
cloud tools, but such external systems cannot be guaranteed to be connected to the sensor
array. In order to achieve this, the requirements on the sensor array are that there should
be (1) basic computation ability in the sensor nodes, and (2) basic communication ability
between sensor nodes (for example, Wifi or Zigbee), with normal reliability of these
nodes as provided by off-the-shelf hardware. Given these requirements, the software
we develop using LightKone technology should be able to perform 24/7 reliable basic
management despite problems in the sensor array, such as nodes going down or unreliable
communications.

2.1.2 Evaluation Objectives
The aim of the experimental evaluation will be to validate the following performance
objectives:

• Nodes Discovery and zero-touch-configuration: After the deployment of nodes
by the farmer, an autonomous network setup is required. It requires that the nodes
coordinate in discovering each other and creating a network topology. This is one
of the most important and challenging targets for evaluation that we have set.

7

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

• Network Management and communication: During network operations, net-
work management and maintenance is required. Topology requirements and shape
may change due to failures in nodes. We seek to evaluate how effective the network
management and communication using the LightKone technologies can be. This
requirement is also one of the major and challenging evaluation targets.

• Load balancing: We seek to evaluate if load balancing would be possible using
the Lightone proposed technology in order to extend the lifetime of the network.

• Information dissemination: We want to examine the effectiveness of the informa-
tion pushed to the controllers (actuators). We will evaluate the energy conservation
and nodes’ tolerance to link failures.

2.1.3 Experiment Design
It is generally considered that sensor/actuator edge networks are too unreliable to do their
own management, so that gateway nodes (PCs) or a cloud connection is necessary. In this
use case we will test and present a platform that increases the resilience of sensor/actuator
edge networks so that they are able to reliably execute basic management tasks directly
on the edge nodes themselves. The platform provides reliable decentralized communica-
tion, storage, and computation abilities, by leveraging CRDTs (Conflict-Free Replicated
Data Types) and hybrid gossip algorithms. This lowers cost, reduces dependencies, and
simplifies maintenance.

Our system has no single point of failure. It consists of three parts: Grisp embedded
system boards, Lasp CRDT-based key/value store, and the Partisan hybrid gossip-based
communication library. We choose Grisp because it directly implements Erlang on the
hardware, which simplifies system development, and because it directly supports Pmod
sensors and actuators and has built-in wireless connectivity. Computation and storage
are limited, but adequate for many management tasks. The system being tested will
be a prototype that is able to run applications on networks of Grisp boards. With this
system we are going to start evaluating the proof-of-concept application for autonomous
irrigation for precision agriculture.

In order to evaluate our system, and due to the fact that we have limited time before
the end of the project due to the restructuring of the use case, we will deploy a sensor
array in the lab where we will test the aforementioned parameters. Following, and in
coordination with the academic partner we are going to use emulators that are being used
in Universities (e.g. WSNet) to test the network in a larger scale and in order to show the
performance under various networks scenarios based on several performance criteria.

(a) Timeline

We target to have the evaluation procedure finished by the end of October 2019.

(b) Experiment description

We will deploy Grisp nodes in a mesh network topology in the lab. These nodes will be
equipped with soil moisture sensors and actuators in order to emulate reality as closely as

LightKone D7.1(v2.0), July 6, 2018, Page 8

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

possible. The nodes will be running the LightKone artifact software described above. We
will perform experiments using the real setup and using the network emulator in order to
measure:

• New node discovery in the network. Success threshold: 90%.

• Nodes breakdown. When a node of the network breaks down then the sensor array
should be reconfigured automatically and continue operating. Success threshold:
80%.

• Network lifetime. We will try different setups in order to extend the energy life
of the network. This experiment would be mainly evaluated through simulators.
As a threshold, the lifetime of the nodes should be at least one irrigation season:
approximately 6 months.

• Information effectiveness. The actuators must be triggered as soon as they actua-
tion threshold is achieved. Success threshold 90%.

• Sensing data accuracy. The node should detect the case that the sensing data (e.g.
malfunction of the sensor) are out of the norms and discarded. Success threshold:
90%

2.2 UPC’s specific evaluations
In this section, we provide the details for the evaluation of UPC’s use case, to be per-
formed in the context of the Guifi.net Community Network (CN).

To recap the use case described in D2.1,Guifi.net is a Community Network where the
network infrastructure is crowd-sourced by the different participants (individuals, collec-
tives, enterprises, etc.). The deployment, maintenance and operation of this decentralised
network are shared among the diverse participants of the different geographical areas
connected. The current project consists of efforts to improve two comoponents: the first,
the dynamic assignment of the server - router assignment (case 1), and second, the mon-
itoring data storage (case 2).

2.2.1 Performance evaluation objectives
The proposed use cases aim to use AntidoteDB in an edge network environment. Com-
pared to the networks in computing clusters of data centers, the Guifi.net environment can
present significant variations in the dynamics of the network properties, affecting latency
and bandwidth, even including eventual disruption of the connection between different
AntidoteDB instances. It is also typical, for edge network environments, the need to cope
with devices of different computing capabilities and availabilities, while in a data cen-
ter the resources’ attributes can be specified and guaranteed to be more homogeneous.
Therefore, the challenges for the performance of AntidoteDB are set by the conditions at
the network edge, and by a use case integrated in the Guifi.net infrastructure which needs
to operate under realistic conditions.

Among the performance objectives, we have initially identified:

LightKone D7.1(v2.0), July 6, 2018, Page 9

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

• Objective 1 (O1): Understanding, for edge networks, the functional perfor-
mance of AntidoteDB in different settings and application scenarios
These settings can be chosen from different options to form AntidoteDB data cen-
ters and interconnect them, with the interest to understand how each option per-
forms under different network and available resources scenarios. Different appli-
cation scenarios can be obtained from the operation of AntidoteDB in the use case:
in the first phase the usage consists in storing the monitoring server , network de-
vices mapping, while in a second phase, we also plan to store data from the devices
monitoring. The expected outcome is to obtain AntidoteDB usage experiences in
edge environments, to be shared with the users and developers community.

• Objective 2 (O2): Understanding the suitability of AntidoteDB for a shared
edge device
The targeted scenario considers AntidoteDB service provision in the microclouds
of Guifi.net and aims to derive recommendations. Since edge computing devices
can also offer end-user services, maintaining an acceptable quality of experience
in this context is important. The outcome is to obtain insights of the options to
provide the AntidoteDB-based monitoring service to allow performing tasks in a
sustainable way, not breaking other services’ provisioning.

The measurements obtained from the experiments aim to characterize the different
application scenarios and the storage service performance AntidoteDB provides, as well
as measure technical metrics related to the cost of using AntidoteDB (e.g., related to
resources consumption).

(a) Metrics and criteria

Table 2.2.1 shows the metrics and experiments in order to respond to Objective 1 (i.e.,
understanding for edge networks, the functional performance of AntidoteDB in different
settings and application scenarios).

Metric Experiment Evaluation criteria
(min // normal // outstanding)

Stability long-term (several days) oper-
ation

one // part // all DC operational

Robustness AD DCs operation under a set
of changing conditions (work-
loads, network, node capacity)

one // part // all DC operational

Heterogeneity run AD on different HW x86 // rc-x86 // ARM and x86 //
ARM and rc-x86

Flexibility experiment case 1 and case 2 - // case 1 // cases 1 and 2 sup-
ported

Table 2.2.1: Metrics and experiments for performance objective O1. ”rc-x86” stands for
resource-constraint x86.

Table 2.2.2 shows the metrics and experiments in order to respond to objective O2,
i.e. understanding the suitability of AntidoteDB for a shared edge device.

LightKone D7.1(v2.0), July 6, 2018, Page 10

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Metric Experiment Evaluation criteria
(min // normal // outstanding)

Multi-tenancy
(QoS)

Operate AD DCs along other
applications on the same node

- // resource usage with regards to
edge environments / -

User experi-
ence (UX) in
community
env.

Dynamic join/leave of AD
DCs. Setup tools. Configu-
ration facility. Monitoring and
logging facilities.

manual expert configuration
// user-configurable // self-
configuring

Data protec-
tion

Authentication possibilities.
Data access protection.

Configurable by expert // avail-
able feature // out-of-the box
configuration

Table 2.2.2: Metrics and experiments for performance objective O2.

The key success criteria for the two objectives are the following:

• AntidoteDB storage layer is functional in environment (O1).

• AntidoteDB storage layer is suitable for environment (O2).

The performance goals can be quantified by the following measures:

• The resource consumption vs available resources under different workloads and
conditions ratio.

• The number of features consisting in the provision of improved features compared
to the current (centralized) monitoring solution.

The deployments that will be done for the experimental evaluation aim to demonstrate
that the desired features of the new distributed monitoring system implementation are
achieved, while at the same time, insights on the cost of using the new system will be
gained.

The minimal planned outcome is that the new monitoring service runs permanently
for long-term study and evaluation in Guifi.net along with the existing one.

While the existing monitoring system is operational and used, its limitations of hav-
ing a single point of failure and lacking a storage service are visible daily in the traffic
monitoring of the network and in the obstacles that its design represents for further im-
provements. A comparison of features of the old and new monitoring solution from dif-
ferent perspectives (e.g., technical, social, economic) is targeted to identify and qualify
the benefits achieved by the new solution.

The timing of the experiments until the end of the project is organized in two cycles
of six months. In the first cycle, from 01/2019 (M25) to 06/2019 (M30), case 1 will
be experimented in order to have consolidated results by 04/2019 (M28), which may
lead to an experience paper to be submitted for publication. The second cycle covers
the period from 07/2019 (M31) until 12/2019 (M36) and addresses both cases 1 and
2. We expect that, for case 1, a new round of experiments may be needed to deeper
investigate determined issues identified in the previous results. At the same time, these
experiments can be combined with case 2 in order to assess the integrated functions of

LightKone D7.1(v2.0), July 6, 2018, Page 11

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

the distributed storage service. The gained results are expected to be elaborated in a
performance evaluation paper.

2.2.2 Edge node hardware selection
The hardware of the computing devices used in the Guifi.net environment is diverse and
heterogeneous. Devices usually range form low-end tiny SBCs to mini-PCs; occasion-
ally, more powerful decommisioned desktop computers or servers are recycled and re-
purposed as computing devices, shared among a group of users.

To give a rough idea, SBCs are commonly based on single/dual-core ARM processors
with 1 GB of RAM, while mini-PCs typically use low-power dual/quad-core x86 CPUs
devices with 2-4 GB of RAM.

(a) x86-based SBCs and mini-PCs

In the context of Guifi.net, different generations of x86-based SBCs and embedded com-
puting devices have been widely used over time to perform different network-related
tasks. Initially, in the 2000s, repurposed desktop computers were used as 24/7-available
tiny servers hosting local contents and network-related services. However, because of
their much lower energy footpring, industrial-grade system boards based on 32 bits AMD
Geode LX CPUs, like the various ALIX1 models, were popular to provide these services.
Later, these boards were superseded by the newer APU and APU22, based on 64 bits
AMD CPUs with more memory and power.

In the recent years, commodity mini-PCs based on the Intel Atom CPU family, such
as the MINIX NEO Z643 and Z83-44 devices have become very popular among the
community of users because of both their low price and small energy footprint and their
capability to run virtual machines and containerized applications. The aforementioned
devices are pictured in Fig. 2.2.1, as well as similar ones also used.

For testing and evaluating the use case applications, we have deployed a testbed with
10 MINIX NEO Z83-4 devices equipped with 4 GB of RAM and 32 GB of MMC disk,
running Debian Stretch5 64 bits. We used the AntidoteDB Docker images from Docker
Hub6 to run AntidoteDB instances in the mini-PCs. The AntidoteDB containers were
instantiated correctly on the x86-based 64 bits mini-PCs and SBCs. The small size of the
devices allows moving them easily between different locations with varying intercon-
nection capabilities (wired/wireless, data center-like/lossy, etc.) in order to test realistic
network environments. Fig. 2.2.3 shows five of the MINIX NEO Z83-4 devices con-
nected to the same wired network, running a [geo-replicated] AntidoteDB cluster, while
the other group of five devices runs another replica of the cluster. The two clusters con-
nect between them by means of two wireless mesh network hops.

1PC Engines ALIX system boards: https://www.pcengines.ch/alix.htm
2PC Engines APU2 system boards: https://www.pcengines.ch/apu2.htm
3MINIX NEO Z64: http://www.minix.us/products/NEOZ64.html
4MINIX NEO Z83-4: http://minix.com.hk/products/neo-z83-4
5Debian Stretch: https://wiki.debian.org/DebianStretch
6AntidoteDB Docker image: https://hub.docker.com/r/mweber/antidote/

LightKone D7.1(v2.0), July 6, 2018, Page 12

https://www.pcengines.ch/alix.htm
https://www.pcengines.ch/apu2.htm
http://www.minix.us/products/NEOZ64.html
http://minix.com.hk/products/neo-z83-4
https://wiki.debian.org/DebianStretch
https://hub.docker.com/r/mweber/antidote/

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Figure 2.2.1: x86-based embedded system boards and mini-PCs that are commonly found
in Guifi.net are part of the testbed used for testing and evaluating the UPC use case
application.

(b) ARM-based SBCs

ARM-based SBCs may be considered not yet powerful enough as to efficiently provide
enterprise-grade services to a large number of users. However, their computing capac-
ity and memory size are growing rapidly to the point that current devices, such as the
Raspberry Pi 37, have a performance comparable to a low/mid range laptop of the early
2010s.8. In addition to their reduced price and energy footprint, their popularity among
end users as a platform for a large amount of do-it-yourself (DIY) projects make them
very interesting hardware candidates for computation at the edge [2]. We explored the
possibility that, besides the x86 mini-PCs, the use case application and, in particular, An-
tidoteDB9, could be compiled and run as-is on ARM-based SBCs like the ones shown in
Fig. 2.2.2.

Tables 2.2.3 and 2.2.4 show the results of compiling the frozen (i.e. stable) and trunk
versions of AntidoteDB and their dependencies on several popular ARM-based SBCs
with different characteristics (32 or 64 bits kernel, different operating system versions, 1
or 2 GB of RAM, etc.). We could observe a number of compilation errors, most of them
directly or indirectly related to eleveldb10, a dependence of AntidoteDB. These errors
referred in Tables 2.2.3 and 2.2.4 are described as follows:

• Error 1: eleveldb fails to compile on 32 bits (both ARM armv7l and x86 i586)
architectures. A possible solution could be to update the dependency rules to a
newer eleveldb version.

7Raspberry Pi 3 Model B: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
8Roy Longbottom Raspberry Pi benchmarks: http://www.roylongbottom.org.uk/

RaspberryPiBenchmarks.htm
9AntidoteDB source code at GitHub: https://github.com/SyncFree/antidote

10eleveldb - Erlang bindings to LevelDB datastore: https://github.com/basho/eleveldb

LightKone D7.1(v2.0), July 6, 2018, Page 13

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://github.com/SyncFree/antidote
https://github.com/basho/eleveldb

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Device Raspberry Pi 2 Raspberry Pi 3 Raspberry Pi 3
CPU BCM2835 BCM2837 BCM2837
RAM 1 GB 1 GB 1 GB
OS Debian Stretch

(raspbian)
Debian Stretch
(raspbian)

Debian Stretch
(bamarni/pi64-
kernel)

ARCH armv7l armv7l aarch64
KERNEL Linux 4.14.34-v7+ Linux 4.14.34-v7+ Linux 4.11.12-

pi64+
AntidoteDB
(frozen)

Error 1 (not solved) Error 1 (not solved) Error 2 (solved)

AntidoteDB
(trunk)

N/A N/A Error 3 (not solved)

ElevelDB OK Error 3 (not solved) OK
Snappy OK OK OK
Google
LevelDB

OK OK OK

IP 10.228.207.25 10.1.24.150 10.228.207.15

Table 2.2.3: Evaluation of AntidoteDB compilation on different RaspberryPi SBCs.

• Error 2: eleveldb fails to compile on 64 bits ARM aarch64 due to the architecture
being unknown to one of its dependencies, snappy-1.0.4. A possible solution
could be to update the config.guess and config.sub files from the embedded
gettetxt11 package.

• Error 3: eleveldb fails to compile on 64 bits ARM aarch64 due to its dependency
snappy-1.0.4 not supporting the architecture. A possible solution could be to
update to snappy-1.1.7 before compiling eleveldb, which ships an up-to-date
gettext package.

• Error 4: eleveldb fails to compile on aarch64 due to its dependency LevelDB12

not supporting atomic pointers on this CPU architecture. A possible solution could
be to update to the newer LevelDB v1.1.18-2 which supports aarch64.

We conclude that, on 32-bits ARM devices, the chosen version of the eleveldb de-
pendency can not be compiled. However, newer versions can be compiled successfully.
On 64-bits ARM devices, the dependency eleveldb cannot be compiled because of two
of its dependencies (snappy and LevelDB) failing to compile on this architecture. Newer
snappy versions can be compiled, while the latest eleveldb version most likely will not
compile, as it depends in turn on Basho’s LevelDB which does not support aarch64 and
seems not to be maintained anymore. However, the original project where the package
was forked from, Google’s LevelDB, could possibly be used, as it compiles success-
fully.

11GNU gettext: https://www.gnu.org/software/gettext/
12leveldb: https://github.com/basho/leveldb

LightKone D7.1(v2.0), July 6, 2018, Page 14

https://www.gnu.org/software/gettext/
https://github.com/basho/leveldb

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Device CubieBoard 2 CubieTruck Pine64 Alix3
CPU Allwinner A20

Dual-Core
Cortex-A7

Allwinner
A20 Dual-
Core Cortex-
A7

Allwinner
A20 Dual-
Core Cortex-
A7

Geode LX
800

RAM 1 GB 2 GB 2 GB 512 MB
OS Debian Stretch Debian

Stretch
Debian
Stretch
(armbian)

Debian
Jessie (back-
ports)

ARCH armv7l armv7l aarch64 i586
KERNEL Linux 4.9.0-6-

armmp-lpae
Linux
4.9.0-6-
armmp-lpae

Linux
4.14.36-
sunxi64

Linux 4.9.0-
0.bpo.5-686

AntidoteDB
(frozen)

Error 1 (not
solved)

Error 1 (not
solved)

Error 2
(solved)

Error 1 (not
solved)

AntidoteDB
(latest)

Error 3 (not
solved)

ElevelDB OK OK Error 3 (not
solved)

OK

Snappy OK OK OK OK
Basho LevelDB OK OK Error 4 (not

solved)
OK

Google
LevelDB

OK OK OK N/A

IP 10.228.207.24 10.228.207.16 10.228.207.26 10.1.33.36

Table 2.2.4: Evaluation of AntidoteDB compilation on diverse SBCs.

Interesting pointers can be found on how to use the system’s snappy library13 and
on LevelDB supporting the aarch64 architecture14. Therefore, despite not being able to
compile AntidoteDB on any of the ARM boards we have evaluated, it seems that updating
the dependencies (namely eleveldb, snappy, leveldb) to more recent versions would make
AntidoteDB work (or, at least, compile). These dependencies, however, are managed by
external organizations and it might be difficult to update them.

2.2.3 Testbed for experimental evaluation
Our testbed aims to support the experimental evaluation of the use cases in the Guifi.net
environment, presented by UPC in WP2. For this purpose, we have installed and config-
ured a set of devices and machines connected to the Guifi.net network on which to deploy
the use case applications.

Monitoring servers in Guifi.net are often installed as a service on a diversity of hard-
ware, which can range from resource-constraint SBCs to desktop servers. Devices are

13eleveldb pull request #244: https://github.com/basho/eleveldb/pull/244
14LevelDB issue #268: https://github.com/Level/leveldown/issues/268

LightKone D7.1(v2.0), July 6, 2018, Page 15

https://github.com/basho/eleveldb/pull/244
https://github.com/Level/leveldown/issues/268

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Figure 2.2.2: A number of different ARM-based SBC during the evaluation process.

often purposed not only for monitoring, but they run several other services, be them
related to the network as to user applications. This scenario fits into the provision of
microclouds in Guifi.net, which are a tool for the community to share services within
the network, and that are based on heterogeneous computing devices contributed by in-
dependent owners. The monitoring service can become part of the services provided by
devices in the microcloud, hence our testbed will be oriented at this scenario.

For the initial evaluation, we have chosen to build a testbed with a set of resource-
constraint physical nodes and virtual machines. The physical nodes are edge devices
which host AntidoteDB and consist of five MINIX Z83-4 mini-PCs (Figure 2.2.3). We
have installed the Cloudy platform on these devices, plus the packages needed to run
AntidoteDB instances as Docker containers. Other physical nodes to become part of
the testbed are a number of RaspberryPi SBCs that, while not being used to host An-
tidoteDB, they are part of the microcloud and may host distributed components of the
monitoring application which act as clients for AntidoteDB. Finally, the virtual machines
are instantiated on several Proxmox servers.

Combining both physical and virtual machines, AntidoteDB instances are deployed
and clustered in a way that they create geo-replicated data centers. The different data
centers are connected with each other through the Guifi.net network. The fact that the
instances are on different geographic locations causes heterogeneity in the network char-
acteristics of bandwidth and latency between the different replicas.

2.3 Scality Specific Evaluations

In this section, we provide specifics of the Scality use-case evaluation plan.

LightKone D7.1(v2.0), July 6, 2018, Page 16

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Figure 2.2.3: A group of five MINIX NEO Z83-4 devices forming a cluster.

2.3.1 Use case overview

Scality’s core technology is a scalable object storage platform called the Scality Ring,
with file-system interfaces and the Amazon Web Services (AWS) Simple Storage Ser-
vice (S3) interface, made popular in that last decade with the growth of public cloud
platforms. The storage system provides customers the option of deploying large scale
object storage systems on premises in much the same way they are deployed on public
clouds. With an increasing interest in deploying storage and applications across both
private and multiple public clouds, Scality has introduced the Zenko Multi-Cloud Con-
troller, an open-source project that provides a unified storage interface across clouds.
Zenko provides an abstraction layer that allows developers to use multiple clouds trans-
parently, by providing a single unifying interface (using the Amazon S3 API) while sup-
porting multi-cloud backend storage systems. Backend storage systems support both
on-premises and other public cloud services, including: Amazon S3, Microsoft Azure
and Google Cloud Platform (GCP).

Zenko provides a federated metadata search capability across all cloud name spaces.
This enables applications to attach metadata attributes on each object, and perform queries
to retrieve objects based on attribute matching criteria independent of the data location.

Zenko supports both in-band updates, performed directly through Zenko, and out-of-
band updates, where applications communicate directly with the backend storage sys-
tems. In the case where application create or update objects directly through Zenko (in-
band), it becomes aware of objects and tracks changes to metadata so that it can provide
federated search. Out-of-band updates are captured using trigger mechanisms offered by
backend storage systems. When an update is performed in a backend storage system,
Zenko is (eventually) notified about the change.

Currently, Zenko supports federated metadata search by capturing and storing object

LightKone D7.1(v2.0), July 6, 2018, Page 17

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

metadata in a distributed database deployed on a single data center, and maintaining
indexes on metadata attributes. The goal of this use case is to improve the search system’s
data and computation placement flexibility.

To achieve this we will use Proteus, a geo-distributed framework for analytics com-
putations on federated data stores. Proteus maintains materialized views and performs
stateful data-flow computations. The framework is designed to enable flexible state and
computation placement according to SLA considerations. More specifically, for this use
case we will use Proteus as a geo-distributed query processing framework, by instanti-
ating materialized views as secondary indexes and search result caches. For a detailed
description of Proteus, we refer to deliverable D6.2.

The query processing sub-system added to Zenko is composed of a modular geo-
distributed hierarchical network of microservices, termed Query Processing Units (QPUs).
QPUs act as stream operators performing bidirectional data-flow computations, and main-
tain internal state used for processing queries. We will use three types of QPUs:

• Indexing QPUs that maintain secondary indexing structures.

• Caching QPUs that store the responses to selected queries.

• Filtering QPUs that read the underlying data store and filter objects matching a
given query.

Proteus is by design modular and flexible. It allows administrators to deploy vary-
ing QPU network configurations by using different types of QPUs, network structures,
and data/computation placement strategies. These different system designs make various
trade-offs and are suitable for different application requirements.

We will experiment with multiple configurations for the proposed query processing
system. A starting point will be a query processing system design implementing a geo-
distributed cross-cloud index for metadata attributes. For this design we will use indexing
QPUs. The index will be distributed across multiple cloud storage systems; a part of the
index will be placed locally on the location (data center) of each storage system, and be
responsible for indexing data stored in that particular system. Each of these parts will be
additionally partitioned for scalability. Each index partition will be implemented as an
indexing QPU. This approach is particularly promising for the out-of-band update case,
where indexes can be generated locally and updated together with the data.

2.3.2 Evaluation Objectives
The aim of the experimental evaluation will be to validate the following:

• Evaluate the flexibility of the metadata search system. The current search sys-
tem implementation make certain assumptions about the cloud applications behav-
ior and making the corresponding trade-offs. However, cloud applications have
varying characteristics and requirements. For example, different applications may
have write- or search-dominated workloads, some may require low search latency
while others always consistent search results. The expected outcome is to demon-
strate that in some extend the implementation of Zenko’s search system using Pro-
teus can be adjusted to target different application requirements and characteristics,
by allowing administrators to flexibility on state and computation placement.

LightKone D7.1(v2.0), July 6, 2018, Page 18

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Client-Applications

Zenko

Cloud A Cloud B Cloud C

Client-Applications

App 1 App 2

Zenko

Cloud A Cloud B Cloud C

Figure 2.3.1: Deployment scenarios for Zenko with in-band and out-of-band updates.

• Evaluate that the system can provide scalable metadata search. We will grad-
ually increase the scale of the evaluation workload by increasing the number of
clients, the number of stored objects, and the number of metadata attributes per
object. The purpose is to show that the system can be used as a practical search
service for multi-cloud applications.

• Understand the effectiveness of edge-based partial index methods in reduc-
ing query staleness and load of the central system. Proteus enables the search
system’s data and computations to be flexibly placed across a geo-distributed sys-
tem architecture, including closer to the clients at the edge. Placing parts of a
geo-distributed index closer to client devices can potentially improve search result
freshness in the case of out-of-band updates, and reduce the load of the data center.
The expected outcome is to expand the design space of distributed query process-
ing with new points in which data and computations are placed closed to the edge
of the system.

• Evaluate the costs associated with providing a solution. In the case of an on-
premises deployment of the solution, the costs are related to the number of servers
and their load as is required to provide a reliable service. In the case that the in-
frastructure is deployed in a public cloud environment using a Kubernetes based
service infrastructure such as Elastic Container Service for Kubernetes (EKS) at
AWS or on the Kubernetes Engine on the GCP, for instance the direct cost of oper-
ating the service can be studied. Since there can be important financial implications
for data flows in or out of the platforms or for specific services, the financial impact
of certain design choices can be significant.

Additionally, we aim to investigate mechanisms for performing queries with resource
consumption and cost constraints. Our goal is to enable users to perform “best-effort”
queries by specifying limits on parameters such as runtime, energy consumption, or cost.
Query processing will run until the specified bounds are reached, and the resulting query
results will be returned. Our goal is to research mechanisms for obtaining the best possi-
ble query results given specific resource consumption constraints.

LightKone D7.1(v2.0), July 6, 2018, Page 19

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

 Zenko on Kubernetes Cluster:
Cloud or On-Premises

S3
Connectors

S3
Connectors

S3
Connectors

S3
Connectors

S3
Connectors

S3
Connectors

S3
Connectors

Mongo
DB

Mongo
DB

Mongo
DB

Mongo
DB

Mongo
DB

Kafka
Queues

Kafka
Queues

Kafka
Queues

LoadbalancersLoadbalancersLoadbalancers

Figure 2.3.2: The Zenko Basic Architecture

However, this work is still in an early stage. With the components deployed in cloud
environments using virtualized and shared components, the true resource consumption
can be difficult to determine.

2.3.3 Experiment Design

(a) Architecture

Zenko is deployed in a Kubernetes 15 cluster of 5 servers, either on premises or in a public
cloud, in order to provide high availability. The system can be managed from a public
portal at zenko.io. This will allow it to be deployed in a straightforward fashion for the
evaluations, on one or many different clouds.

The evaluation will take advantage of the geographically distributed nature of public
cloud infrastructure. The software solution will be deployed across a number of distant
sites with a centralized query interface as a reference. The number of satellite sites is
expected to be in the range of 3-5. The geographically dispersed nature of global cloud
infrastructures can provide latencies of over 300msec between certain sites. This allows
tests to be performed which tests the liveliness and efficiency of the models across a range
of conditions.

(b) Experiment Description and metrics

The primary objective of our evaluation is to demonstrate that the proposed system has
the ability to optimize different metrics as required for a specific usage. To confirm
the capability of the proposed solution to accomplish this, we will evaluate different
scenarios, each scenario requiring the optimization of different metrics.

For each scenario we will deploy a search system implemented using Proteus and
adjusted for targeting the requirements of the specific scenario. Data will be ingested
and/or deleted using both in- and out-of-band operations, and the target metric will be
measured. We will also measure the target metric for the metadata search system cur-
rently implemented in Zenko, and use this as the baseline for comparison.

15https://kubernetes.io/

LightKone D7.1(v2.0), July 6, 2018, Page 20

https://zenko.io
https://kubernetes.io/

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Metric Explanation
Query latency The elapsed time required to complete a fully dis-

tributed query
Query liveliness Minimize the delay before remote updates appear

in queries
Cross site bandwidth Minimize the delay before remote updates appear

in queries
Storage overhead Minimize the quantity and cost of storage required

to deploy the chosen architecture

The expected outcome of this approach is the optimization of the desired metric in
all scenarios by the proposed design, but the negative impact on other metrics will be
considered as well.

It is expected that loads will likely have a smaller effect on the results than the chosen
architecture. The public cloud infrastructures that will be used for the testing are gener-
ally sufficiently sized to support significant loads and bandwidth. The query liveliness is
expected to be the most adversely affected by high loads. The ability to demonstrate the
ability to significantly affect the metrics that are being optimized is a key goal. By having
a composable design of the search architecture, different performance and cost criteria
can be met by redistributing the Proteus components.

(c) Tools

Benchmarking tools for object storage platforms exist with the most well known tool
being Cosbench developed by Intel 16. This tool will most likely be used extensively
for generating object creation and deletion traffic during the evaluations. Object-storage
based search queries are currently not supported on most public cloud platforms and so
query performance testing tools will likely need to be developed specifically for these
evaluations. There are standard tools for the generation of HTTP traffic such as httperf
17. Search queries on the Scality platform are REST based and so these tools should be
able to be adapted to generate the search loads.

2.4 Stritzinger Specific Evaluations
In this section, we provide specifics of the Stritzinger use case evaluations

2.4.1 Use case overview

().1 Distributed RFID Cache Stritzinger has implemented an Erlang-based imple-
mentation of the RFID protocol and a local cache for the data on embedded nodes which
are running a predecessor of the current GRiSP platform for its customer Bosch-Rexroth

16https://github.com/intel-cloud/cosbench
17https://github.com/httperf/httperf

LightKone D7.1(v2.0), July 6, 2018, Page 21

https://github.com/intel-cloud/cosbench
https://github.com/httperf/httperf

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Figure 2.4.1: SmartF-IT Research Project Demo which is similar but a bit larger to the
available one

in the past. Depending on support from Bosch-Rexroth, Stritzinger can evaluate the dis-
tributed caching system for the RFID tag content and other content associated with a tag
(digital twin) on a prototype industrial transport system or a demonstrator.

We have secured access to a real-world demonstrator for a industrial transport system
with RFID tag readers. The demonstrator allows multiple paths for workpiece carriers
and has up to 15 networked embedded systems with RFID support attached to it. The
demonstrator is located at Bosch-Rexroth in Stuttgart, Germany.

2.4.2 Evaluation Objectives
The aim of the experimental evaluation will be to validate the following top level require-
ments identfied in the SysML Requirements Analysis in deliverable D2.2:

• Allow concurrent writes with last writer wins semantics

• Communication with the manufacturing process

• Data of different RFID tags is independent

• Localize workpiece

• Mesh like network topology

• Persistence of information

• Runs on existing RFID reader hardware

• Store processing information on each workpiece

LightKone D7.1(v2.0), July 6, 2018, Page 22

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Figure 2.4.2: RFID Reader Prototype Boards controlling a converyor belt distributedly

• RFID tags shall stop as little as possible

If against all odds there will be no real-world demonstrator available, Stritzinger can
evaluate the implementation also in a simulator running the Erlang based implementation
on non-embedded hardware and simulating the movement of the tags. Simulating an
application like this might also open up the possibility for collaboration with one of the
academic partners.

2.4.3 Experiment Design

(a) Timeline

We plan to have a working prototype implementation by end of October 2019 and start
testing on the Bosch-Rexroth hardware in November 2019

(b) Architecture

We have a maximum of 15 embedded nodes available with 200MHz PowerPC based
CPUs and 64MiB of RAM. They have a Texas Instruments TRF7970 RFID transceiver
and ISO15693 Antennas. The workpiece carriers are equipped with IS15693 tags with
2kiB FRAM which supports millions of writes.

(c) Experiment Description

The workpiece carriers will be moving along the conveyor belt passing by several RFID
antennas where they can potentially stop. Since there is no real processing done on this
demonstrator, we have to emulate processes writing to the tags with random data.

We will be able to verify in long running experiments that data integrity remains intact
and that all invariants remain valid.

Furthermore, we will be able to demonstrate that stopping at the RFID antennas is
substantially reduced.

LightKone D7.1(v2.0), July 6, 2018, Page 23

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

Figure 2.4.3: RFID Reader Prototype with Antenna

Figure 2.4.4: RFID Reader Prototype mounted at SmartF-IT Demonstrator

LightKone D7.1(v2.0), July 6, 2018, Page 24

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

To show scalability of the application we will use a simulator that runs the full Erlang
application in separate Erlang VMs and simulating the RFIDs moving between them.

(d) Further Contributions

Stritzinger has described several other use cases and is also contributing to the general
technology base in WP3 and WP5.

(d).1 Smart Metering Use Case For the smart metering use case Stritzinger has been
working on market research and a business case for a more concrete use case. After initial
research it was decided to not pursue this business sector in the near future.

(d).2 GRiSP GRiSP is a software framework that allows running Erlang applications
on small embedded systems which are common at the Edge of the network. This allows
the same codebase to be deployed on these small systems as on either larger edge sys-
tems or in the cloud. We also developed a hardware platform to make it easier to build a
prototype of such a system, reducing our time-to-market for Internet of Things and Cyber
Physical Systems and other embedded systems. The hardware was already in develop-
ment before the start of the LightKone project and the development costs are not financed
by LightKone. However, the corresponding software platform was greatly improved and
completed during the project and is used together with the hardware platform by research
partners.

(d).3 LASP on GRiSP UCL has successfully ported their distributed systems plat-
form LASP onto the GRiSP board in the last months and will continue the evaluation of
wirelessly networked GRiSP hardware as sensor nodes together with LASP.

Initial evaluation to determine if GRiSP is a viable platform to run LASP and process
sensor data, is complete at this point. Concrete plans for further evaluation are not known
at this time since a new set of master students will start to continue the work in fall 2018.

(d).4 Antidote on GRiSP UPMC is starting to port the client-cache component, EdgeAnt,
of Antidote on GRiSP and will start evaluating the possibilities of sensor nodes sharing
their data through the Antidote database.

A first step of the evaluation will be the verification of the portability of the Erlang
code to the GRiSP board. The evaluation of resource usage to examine the viability to run
EdgeAnt on small Edge IoT devices will be the next step. Further plans are not known at
this point, but will become known later in the project.

(d).5 GRiSP for research outside of LightKone Several institutions are using the
GRiSP platform for IoT and other embedded systems research. The University of St.
Andrews is using GRiSP for autonomous robotic vehicle research. The University of
Bournemouth has a group that starts a project with GRiSP that researches small swarms
of interacting robots which combines Edge networking with robotics. The University of
Kent has plans to use GRiSP in research of which details are not yet known. GRiSP was
also used for research at the Technical University Munich on hard real-time Erlang and

LightKone D7.1(v2.0), July 6, 2018, Page 25

CHAPTER 2. EVALUATION PLANS FOR THE USE CASES

AGH University of Science and Technology Krakow for IEEE 802.15.4 Personal Area
Networking.

(d).6 GRiSP for education To evaluate the reduced complexity of getting started
with IoT and other embedded systems applications, we are successfully giving tutorials
at conferences and at universities (Erlang User Conference Stockholm 2017, CodeBEAM
Stockholm 2018, AGH University Krakow 2018) and help teaching initiatives like School
of Erlang Krakow. Especially the students of School of Erlang, who have just started
learning Erlang, reported ease of code deployment on the boards and sensor access.

(d).7 Improvements to Erlang transparent distribution protocol Stritzinger will
continue to implement and evaluate its planned improvements to the Erlang distribution
protocol. So far, they built a prototype to get around the head-of-line blocking problem in
Erlang Distribution (a large message highly increases the latency of smaller messages).
The next step will be working on the scalability issues of the protocol.

Stritzinger plans to evaluate the scalability improvements in larger mesh-networked
cyber-physical nodes which run under the GRiSP platform if one of its customer projects
proceeds at Bosch-Rexroth and will give them access to a network of industrial transport
controllers. In absence of this, they will need to test either with cloud instances or GRiSP
boards.

(d).8 IEEE 802.15.4 Protocol Stack for GRiSP As of recently Stritzinger received
interest from potential customers or partner companies in mesh networking of GRiSP
sensor nodes and gateways to other protocols. They plan to implement a protocol stack
for IEEE 802.15.4 compatible hardware that can be connected to the GRiSP hardware
boards (PMOD RF2 from Digilent). From there they want to explore if either one of
the standardized protocols on top of 802.15.4 like Zigbee, 6LoWPAN or ISA100.11a are
useful to implement or if they rather want to implement a proprietary protocol of their
own design.

LightKone D7.1(v2.0), July 6, 2018, Page 26

Chapter 3

Evaluations in an Academic Context

In this section, we present preliminary evaluations of several software prototypes that
have been developed in WP3, WP5 and WP6. These evaluations focus synthetic work-
loads; for Legion, we were additionally able to conduct a user study using a collaborative
game.

3.1 Legion
Legion is a framework for developing web applications that leverage peer-to-peer com-
munication, thus allowing to move web applications to the edge of the network. The
web applications running on the client browsers can interact directly by using peer-to-
peer WebRTC connection or indirectly through the server running in the cloud. The
interaction with the server is mediated through a set of adapters that allow to connect to
different cloud infrastructures. The development of Legion has started in the last period
of the SyncFree project; a detailed description can be found in deliverable D5.1.

In this section we present the evaluation of Legion with an emphasis on the opera-
tion of Legion when using the adapters to inter-operate with the Google Drive Realtime
(GDriveRT) infrastructure (unless stated otherwise in our experiments, we ran Legion
with all GDriveRT adapters enabled and with support for legacy clients disabled). Our
evaluation mainly focuses on two complementary aspects. We start with an analysis of
our experience in adapting existing GDriveRT applications to leverage Legion. Then, we
present an experimental evaluation of our prototype, comparing it with the centralized

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8
Legion 4
Legion 8

GDriveRT 4
GDriveRT 4
GDriveRT 8
GDriveRT 8

Legion 4
Legion 8

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8
Legion 4
Legion 8

GDriveRT 4

GDriveRT 4
GDriveRT 8
GDriveRT 8

Legion 4
Legionasdasd8

(a) All clients within the same datacenter

 25

 50

 75

 100

10ms
50ms

100ms
500ms

1s 5s 10s 50s

C
D

F
(%

)

Latency (ms)
Legion 4
Legion 8

Legion 16
Legion 32
Legion 64

GDriveRT 4
GDriveRT 8

GDriveRT 16
GDriveRT 32
GDriveRT 64

(b) Clients distributed over 2 datacenters

Figure 3.1.1: Latency for the propagation of updates.

27

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

infrastructure of GDriveRT regarding the following practical aspects: (i) What is the im-
pact on update propagation latency? (ii) What is the impact on application performance?
(iii) How does the system behave when the central server becomes (temporarily) unavail-
able? (iv) What is the impact of using Legion in terms of load imposed on the central
component and on individual clients? (v) What is the overhead for supporting seamless
integration with legacy clients?

(a) Designing Applications

We start by describing a set of web applications that we have ported to Legion using the
GDriveRT adapters.

Google Drive Realtime Playground: The Google Drive Realtime Playground [1]
is a web application showcasing all data types supported by GDriveRT. We ported this
application to Legion by changing only 2 lines in the source code.

Multi-user Pacman: We adapted a JavaScript version of the popular arcade game
Pacman to operate under the GDriveRT API with a multi-player mode. We also added
support for multiple passive observers that can watch a game in real time. In our adapta-
tion, up to 5 players can play at the same time, one player controlling Pacman (the hero)
and the remaining controlling each of the four Ghosts (enemies).

The Pacman client is responsible for computing and updating the adequate data struc-
tures that maintain the official position of each entity. Clients that control Ghosts only
manipulate the information regarding the direction in which they are moving. If no player
controls a Ghost, its direction is determined by the the original game’s AI, running in the
client controlling Pacman.

In this game, we employed the following data types provided by the GDriveRT API:
(i) a map with 5 entries, one for Pacman and the remaining for each Ghost, where each
entry contains the identifier (ID) of the player controlling the character (each user gener-
ates its own random ID); (ii) a list of events, that is used as a log for relevant game events,
which include players joining/leaving the game, a Ghost being eaten, Pacman being cap-
tured, etc. (iii) a list representing the game map, used to maintain a synchronized view of
the map between all players; this list is modified, for instance, whenever a pill is eaten by
Pacman; (iv) a map with 2 entries, one representing the width and the other the height of
the map; this information is used to interpret the list that is used to encode the map; (v) a
map with 2 entries, one used to represent the state of the game (paused, playing, finished)
and the other used to store the previous state (used to find out which state to restore to
when taking the game out of pause); finally, (vi) 5 maps, one for each playable character,
with the information about each of these entities, for maintaining a synchronized view of
their positions (this is only altered when the corresponding entity changes direction, not
at every step), directions, and if a ghost is in a vulnerable state.

Along with extending and porting this application to use the GDriveRT API, we also
implemented the same game (with all functionality) using Node.js as a centralized server
for the game to which the clients connect using web sockets (this implementation does
not leverage Legion). This enables us to investigate the effort in implementing such an
interactive application using both alternatives. The Node.js implementation of the game
is approximately 2.200 LOC for the client code, and 100 LOC for the server. In con-
trast, the implementation leveraging the GDriveRT API has approximately 1.620 LOC

LightKone D7.1(v2.0), July 6, 2018, Page 28

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

for the client code, and 40 lines of code for the server side (used to run multiple games
in parallel). This shows that an API such as the one provided by GDriveRT and Legion
simplifies the task of designing such interactive web applications.

Creating the Legion version (using the GDriveRT adapters) required to change only
two lines of code to the GDriveRT version (as described before). From a user perspective,
the Legion version runs much smoother, which is also shown by our evaluation presented
further ahead.

Spreadsheet: We have also explored an additional application: a collaborative spread-
sheet editor. Each spreadsheet represents a grid of uniquely identifiable rows and columns,
whose intersection is represented by an editable cell. Each cell can hold numbers, text,
or formulas that can be edited by different users.

A prototype of the spreadsheet web application was built using AngularJS and sup-
porting online collaboration through GDriveRT. The spreadsheet cells were modeled us-
ing a GDriveRT map. Each cell was stored in the map using its unique identifier (row-
column) as key. Porting this application to the Legion API only required the change of 2
lines of code (as discussed previously).

Discussion: Our experience with porting these applications to leverage Legion shows
that doing so is simple, as the programmer can easily use our GDriveRT adapters. Fur-
thermore, this shows that carefully designing our framework to expose (through adapters)
APIs that are similar to existing Web infrastructures is paramount to promote easy adop-
tion of our solutions.

(b) Experimental evaluation

In our experimental evaluation, we compare Legion, with and without the use of adapters,
against GDriveRT, as a representative system that uses a traditional centralized infrastruc-
ture.

In our experiments, we have deployed clients in two Amazon EC2 data centers, lo-
cated at North Virginia (us-east-1) and Oregon (us-west-2). In each DC, we run clients
in 8 m3.xlarge virtual machines with 4 vCPUs of computational power and 15GB of
RAM. Unless stated otherwise, clients are equally distributed over both DCs. The aver-
age round-trip time measured between two machines in the same DC is 0.3 ms and 83
ms across DCs.

Latency: To measure the latency experienced by clients for observing updates, we
conduct the following experiment. Each client inserts in a shared map a key-value pair
consisting of its identifier and a timestamp. When a client observes an update on this map,
it adds to a second map, as a reply, another pair concatenating the originating identifier
and the replier’s identifier as the key, and as value an additional timestamp. When a
client observes a reply to his message, it computes the round-trip time for that reply, with
latency being estimated as half of that time. All clients start by writing to the first map
at approximately the same time and reply to all identifiers added by other clients. Thus,
this simulates a system where the load grows quadratically with the number of clients.

Figure 3.1.1 presents the latency observed by all clients for both Legion and GDriveRT.
The results show that latency using Legion is much lower than using GDriveRT for any
number of clients. The main reason for this is that the propagation of updates does not
necessarily incur a round-trip to the central infrastructure in Legion. Furthermore, for 64

LightKone D7.1(v2.0), July 6, 2018, Page 29

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

 0

 1

 2

 3

 0 20 40 60 80 100 120 140

D
is

ta
nc

e
of

 P
ac

m
an

 to
 th

e
 e

at
en

 p
ill

(ti
le

s)

Received ’pill-eaten’ Updates

Legion
GDriveRT

(a) Pacman displacement to eaten
pills

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

D
is

pl
ac

em
en

t (
til

es
)

to
 o

ffi
ci

al
 p

os
iti

on

Received Position Updates

Legion
GDriveRT

(b) Pacman and Ghosts Displace-
ment

Figure 3.1.2: Muti-User Pacman Performance assessment.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

80 s 180 sRe
ce

ive
d

O
pe

ra
tio

ns
 p

er
 c

lie
nt

 d
ivi

de
d

by
 T

ot
al

 O
pe

ra
tio

ns

Time (seconds)

Legion
GDriveRT

Figure 3.1.3: Effect of
disconnection

 0
 5

 10
 15
 20
 25
 30
 35

Se
rv

er
 lo

ad
 (K

B/
s)

Legion w/ Node.js
Legion w/ GDriveRT

Legion w/ GDriveRT w/ Legacy
GDriveRT

 0 5
 10 15 20 25 30 35

Se
rv

er
 lo

ad
 (K

B/
s)

Legion w/ Node.js
Legion w/ GDriveRT

GDriveRT
Legion w/ GDriveRT w/ Legacy Distant Nearby

 0
 1500
 3000
 4500
 6000
 7500
 9000

Se
tu

p
lo

ad
 (K

B)

(a) Server load during setup
 0
 5

 10
 15
 20
 25
 30
 35

Se
rv

er
 lo

ad
 (K

B/
s)

(b) Server load during opera-
tions

0
3
6
9

12
15

Setup Operations

Cl
ie

nt
 b

an
dw

id
th

 (K
B/

s)

(c) Client-to-client load

Figure 3.1.4: Network load.

clients, the 95th percentile for GDriveRT is almost an order of magnitude above Legion,
suggesting that Legion’s peer-to-peer architecture is better suited to handle higher loads
than the centralized architecture of GDriveRT.

Multi-Player Pacman Performance: We now show the impact of Legion on the
performance of applications in the context of our Multi-player Pacman game.

To that end, we conducted an experiment with volunteers, where we had five users
playing Pacman (one player controlling Pacman, and four players for each of the ghosts).
This experiment was conducted using five machines, in a local area network. Machines
were running Ubuntu and clients executed in Firefox.

The goal of our experiment was to measure the displacement of entities in relation
to their official position. As explained before, each client updates an object with the di-
rection of its movement. The Pacman client computes and updates the official position
of each entity periodically. Each client independently updates its interface based on the
known direction of movement and the latest official positions. Displacement captures
the difference between the position computed by a client and the received official posi-
tion upon receiving an update. When displacement has large values, users see entities
jumping on the game map. In particular, we measure: (i) the displacement of Pacman
in relation to an eaten pill when an update reporting the pill being eaten is received by a
client controlling a Ghost; and (ii) the displacement of Pacman and Ghosts when a client
controlling a ghost receives an update for a position. Figure 3.1.2 reports the obtained
results where the displacement is measured in tiles (the square unit that forms the inter-
face). The board size of Pacman was 19⇥22 tiles featuring approximately, 59 turning
points. Pacman and Ghosts move at approximately 3.33 tiles per second.

Figure 3.1.2a shows that when using Legion the interface is much more synchronized
in relation to the real state of the system, showing that Pacman is visible by other players

LightKone D7.1(v2.0), July 6, 2018, Page 30

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

much closer to the eaten pill than when using the GDriveRT version of the game. Fig-
ure 3.1.2b reinforces these results showing that using Legion the displacement of entities
in the game interface is significantly lower when compared with the game version that
only uses GDriveRT, which is unable to send updates to all clients at an adequate rate.

Effect of disconnection: We study the effect of disconnection by measuring the
fraction of updates received by a client. In the presented results, clients share a map
object, and each client executes one update per second to the map (similar behavior was
observed with other supported objects). We simulate a disconnection from the Google
servers, by blocking all traffic to the Google domain using iptables, 80 seconds after the
experiment starts. The disconnection lasts for 100 seconds, after which rules in iptables
are removed so that connections can again be re-established.

Figure 3.1.3 shows, at each moment, the average fraction of updates observed by
clients since the start of the experiment (computed by dividing the average number of
updates received by the total number of updates executed). As expected, the results show
that during the disconnection period, GDriveRT clients no longer receive new updates, as
the fraction of updates received decreases over time. When connectivity is re-established,
GDriveRT is able to recover. With Legion, as updates are propagated in a peer-to-peer
fashion, the fraction of updates received is always close to 100%.

We note however that, while servers remain inaccessible, new clients cannot join
the system. When leveraging Legion, clients that are active when the server becomes
unavailable can continue operating regularly without noticing the server unavailability.

Network load: We now study the network load induced by our approach. To this
end, we run experiments where 16 clients share a map object. Each client executes one
update per second. The workload is as follows: 20% of updates insert a new key-value
pair and 80% replace the value of an existing key selected randomly. The keys and values
are strings of respectively 8 and 16 characters. We measure the network traffic by using
iptraf, an IP network monitor.

In these experiments, we used the following configurations: Legion w/ Node.js: that
uses our Legion server as backend. Legion w/ GDriveRT: that uses GDriveRT documents
as backend. GDriveRT: that uses the original GDriveRT document as backend.

Figure 3.1.4a shows the total network load of the setup process, which entails mak-
ing the necessary connections to the infrastructure and peer-to-peer connections. The
incurred load using our own backend server is due to clients requiring to use this compo-
nent to connect to each other initially (WebRTC signaling). Legion using GDriveRT as
backend has a slightly higher cost due to the overhead of performing signaling through
the infrastructure, which is less efficient. In both cases, only few clients obtain the ini-
tial object and propagate to other clients. Finally, in GDriveRT all clients download the
shared data from the infrastructure.

Figure 3.1.4b shows the network load of the server without considering the initial
setup load (computed by adding the traffic of all clients to and from the centralized in-
frastructure) for all competing alternatives. Results show that the load imposed over the
centralized component is much lower when using Legion with GDriveRT as backend than
when using only GDriveRT. This is expected, as only a few clients (active clients) interact
with the GDriveRT infrastructure, being most interactions propagated directly between
clients. Interestingly, the use of our server leads to an even lower load on the centralized
component. This happens not only because the signaling mechanism used to establish

LightKone D7.1(v2.0), July 6, 2018, Page 31

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

new WebRTC connections among clients and the process for replica synchronization
with the server is more efficient, but also because the data representation used by our
backend is significantly more compressed. We run an additional configuration, (Legion
with GDriveRT w/ Legacy) that uses GDriveRT documents as backend and synchronizes
with the original document every 5 seconds. Supporting legacy clients (i.e., synchroniz-
ing with the original document) incurs a non-negligible overhead. This happens because
the mechanism used requires a large number of accesses to the centralized infrastructure
as to infer which operations should be carried from legacy clients to the Legion clients
and vice versa. However, even with support for legacy clients enabled, Legion induces
lower load on the centralized component when compared with GDriveRT.

Figure 3.1.4c reports the average peer-to-peer communication traffic for each client
during the setup of WebRTC connections (Setup) and while clients issue and propagate
operations (Operations). The results show that the traffic of each client is larger than the
traffic of each client with the server in GDriveRT (which can be approximated by divid-
ing the server load – in Figure 3.1.4b – by the number of clients). This happens because
our dissemination strategy has inherent redundancy, whereas in GDriveRT there are no
redundant transmissions between each client and the centralized infrastructure. How-
ever, an average under 14KBps does not represent a huge fraction of available bandwidth
nowadays. Furthermore, the use of our location-aware overlay leads to a network-usage
pattern where the amount of data sent to distant nodes is significantly lower than that sent
to nearby nodes.

3.2 Antidote with Non-uniform Replication
Non-uniform replication is a mechanism to optimize the replication process in geo-
replicated settings, by storing and propagating only a subset of the updates among the
multiple replicas. Our integration of this mechanism in Antidote has been presented
in deliverable D3.1, with its application in light-edge and heavy-edge solutions being
discussed in D5.1 and D6.1. In this section, we present the evaluation of non-uniform
replication, first by simulation and then with results from a real deployment in Antidot-
eDB.

3.2.1 Simulation
We start by comparing non-uniform replication CRDT designs against state-of-the-art
CRDT alternatives: delta-based CRDTs [3] that maintain full-object replicas efficiently
by propagating updates as deltas of the state; and computational CRDTs [9] that maintain
non-uniform replicas using a state-based approach.

Our first evaluation is performed by simulation, using a discrete event simulator. To
show the benefit in terms of bandwidth and storage, we measure the total size of messages
sent between replicas for synchronization (total payload) and the average size of replicas.

To this end, we simulate a system with 5 replicas for each object. Both our designs
and the computational CRDTs support up to 2 failing replica by propagating all opera-
tions to, at least, 2 other replicas other than the source replica. We note that this limits the
improvement that our approach could achieve, as it is only possible to avoid sending an

LightKone D7.1(v2.0), July 6, 2018, Page 32

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

operation to two of the five replicas. By either increasing the number of replicas or reduc-
ing the fault-tolerance level, we expect that our approach would perform comparatively
better than the delta-based CRDTs.

(a) Top-K with removals

The Top-K data type allows access to the top-K elements added to some sorted collection
object and can be used, for example, for maintaining the leaderboard in online games.

The semantics of the operations defined in the top-K CRDT is the following. The
add(el,val) operation adds a new pair to the object. The rmv(el) operation removes any
pair of el that was added by an operation that happened-before the rmv (note that this in-
cludes add operations that have not been propagated to the source replica of the remove).
This leads to an add-wins policy [11], where a remove has no impact on concurrent adds.
The get() operation returns the top-K pairs in the object, as defined by the function topK
used in the algorithm.

We compare our Top-K design (NuCRDT) with a delta-based CRDT set [3] (Delta
CRDT) and the top-K state-based computational CRDT design [9] (CCRDT).

The top-K was configured with K equal to 100. In each run, 500000 update operations
were generated for 10000 Ids and with scores up to 250000. The values used in each
operation were randomly selected using a uniform distribution. A replica synchronizes
after executing 100 events.

Given the expected usage of top-K for supporting a leaderboard, we expect the re-
move to be an infrequent operation (to be used only when a user is removed from the
game). Figures 3.2.1 and 3.2.2 show the results for workloads with 5% and 0.05% of
removes respectively (the other operations are adds).

 0
 50

 100
 150
 200
 250
 300
 350
 400

100k 200k 300k 400k 500k

To
ta

l M
es

sa
ge

 P
ay

lo
ad

 (
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
ge

 R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3.2.1: Top-K with removals: payload size and replica size, workload of 95/5

In both workloads, our design achieves a significantly lower bandwidth cost when
compared to the alternatives. The reason for this is that our design only propagates op-
erations that will be part of the top-K. In the delta-based CRDT, each replica propagates
all new updates and not only those that are part of the top. In the computational CRDT
design, every time the top is modified, the new top is propagated. Additionally, the pro-
posed design of computational CRDTs always propagates removes.

The results for the replica size show that our design is also more space efficient than
previous designs. This is a consequence of the fact that each replica, besides maintaining
information about local operations, only keeps information from remote operations re-
ceived for guaranteeing fault tolerance and those that have influenced the top-K at some

LightKone D7.1(v2.0), July 6, 2018, Page 33

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

To
ta

l M
es

sa
ge

 P
ay

lo
ad

 (
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
ge

 R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3.2.2: Top-K with removals: payload size and replica size, workload of 99.95/0.05

moment in the execution. The computational CRDT design additionally keeps informa-
tion about all removes. The delta-based CRDT keeps information about all elements that
have not been removed or overwritten by a larger value. We note that as the percentage
of removes approaches zero, the replica sizes of our design and that of computational
CRDT starts to converge to the same value. The reason for this is that the information
maintained in both designs is similar and our more efficient handling of removes starts
becoming irrelevant. The opposite is also true: as the number of removes increases, our
design becomes even more space efficient when compared to the computational CRDT.

(b) Top Sum

To evaluate our Top Sum design (NuCRDT), we compare it against a delta-based CRDT
map (Delta CRDT) and a state-based computational CRDT implementing the same se-
mantics (CCRDT).

The top is configured to display a maximum of 100 entries. In each run, 500.000
update operations were generated for 10.000 Ids and with challenges awarding scores
up to 1000. The values used in each operation were randomly selected using a uniform
distribution. A replica synchronizes after executing 100 events.

 1

 10

 100

 1000

100k 200k 300k 400k 500k

To
ta

l M
es

sa
ge

 P
ay

lo
ad

 (
M

B
),

 lo
g1

0

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

100k 200k 300k 400k 500k

A
ve

ra
ge

 R
ep

lic
a

S
iz

e(
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3.2.3: Top Sum: payload size and replica size

Figure 3.2.3 shows the results of our evaluation. Our design achieves a significantly
lower bandwidth cost when compared with the computational CRDT, because in the
computational CRDT design, every time the top is modified, the new top is propagated.
When compared with the delta-based CRDTs, the bandwidth of NuCRDT is approxi-
mately 55% of the bandwidth used by delta-based CRDTs. As delta-based CRDTs also
include a mechanism for compacting propagated updates, the improvement comes from

LightKone D7.1(v2.0), July 6, 2018, Page 34

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

the mechanisms for avoiding propagating operations that will not affect the top elements,
resulting in less messages being sent.

The results for the replica size show that our design also manages to be more space
efficient than previous designs. This is a consequence of the fact that each replica, be-
sides maintaining information about local operations, only keeps information of remote
operations received for guaranteeing fault-tolerance and those that have influenced the
top elements at some moment in the execution.

3.2.2 AntidoteDB
In this section, we evaluate the performance of Non-uniform CRDTs in AntidoteDB. To
this end, we compare the Top-K and Top-K with removals Non-uniform CRDTs with the
current available solution that uses an add-wins set CRDT. The add-wins set is imple-
mented by generating a new unique token for every insert operation. A remove operation
will remove all tokens associated with an element known in the replica where the opera-
tion was executed.

The experiments we present in this chapter try to assess whether the introduction of
non-uniform replication in a geo-replicated database system allows to: (i) reduce the size
of database replicas; (ii) reduce the bandwidth used for synchronizing replicas. Further-
more, we study the scalability of a system that uses non-uniform replication in compari-
son with a system using full replication.

(a) Dissemination overhead and replica sizes

We started by measuring the size of the replicas and the bandwidth consumed for syn-
chronizing replicas. To this end, we modified AntidoteDB to store in each data center
the total size of messages transmitted for a given object. To measure the size of data type
replicas we have introduced support for accessing the full object representation.

The experiment executes a sequence of randomly generated updates to different ob-
jects, where all different objects receive the same updates. The values used in each oper-
ation (regardless of the data type) were randomly selected using a uniform distribution.
In the experiment we compare the Non-uniform CRDTs proposed in this work with the
operation-based CRDTs currently available in AntidoteDB. Data points were recorded
every 5,000 operations, by obtaining the total message size each data center had trans-
mitted so far for each object and the size of the objects, which we later used to compute
the mean size of each object. All results represent the mean result of three independent
runs.

The experiments were ran on Amazon Web Services EC2, using m3.xlarge machine
instances for both the AntidoteDB nodes and the node issuing the benchmark operations.
Each of the machines were launched in the eu-west-1c region. A total of 5 AntidoteDB
nodes were used, each one forming its own data center (containing only one node). Each
AntidoteDB node was configured to buffer transactions for a period of 200 milliseconds.

(a).1 Top-K We first evaluated the performance of the Top-K design. In this case
we compared our design against an add-wins set that models the same semantics on the
client side, by explicitly removing elements from the set which become masked. This

LightKone D7.1(v2.0), July 6, 2018, Page 35

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

experiment used the following configuration: K was configured to 100, player identifiers
were selected with a uniform distribution from a domain of 10,000, and scores were
generated randomly with a uniform distribution from 0 to 250,000. The results are shown
in Figure 3.2.4.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

To
ta

l M
es

sa
ge

 S
iz

e
(M

B
s)

Number of update operations

NuCRDT CRDT

 0

 1000

 2000

 3000

 4000

 5000

 6000

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

M
ea

n
R
ep

lic
a

S
iz

e
(B

yt
es

)
Number of update operations

NuCRDT CRDT

Figure 3.2.4: Top-K: total message size and mean replica size

For the total message size our data type achieved up to a 3 times lower dissemination
cost. This is expected since to model the semantics of the top-K in the add-wins set,
elements have to be explicitly removed once they are no longer part of the top.

The results for the replica size show the efficiency of the state representation of our
data type (up to a 4.8 times reduction). Even though both objects mostly have the same
number of elements (roughly 100 for the add-wins set and always 100 for the Top-K)
our design implementation manages to have a better state representation since it does not
require unique tokens like the add-wins set.

(a).2 Top-K with removals We now compare the design of the Top-K with removals
against an add-wins set which models the same semantics on the client side, by explic-
itly managing the removal of each affected element as would occur in the Non-uniform
CRDT.

In this experiment, K was configured to be 100, player identifiers were selected with
a uniform distribution from a domain of 10,000, and scores were generated randomly
with a uniform distribution from 0 to 250,000. Furthermore, the system was configured
to support from zero to two faults (f = 0, f = 1, f = 2) by propagating masked operations
to f replicas.

As for the simulations in section 3.2.2, given the expected usage of a top-K for sup-
porting a leaderboard, we expect the remove to be an infrequent operation (to be used
only when a user is removed from the game). Thus, the workload was chosen with this
in consideration. Figure 3.2.5 shows the results for a workload of 95% of adds and 5%
of removes.

Our design achieved both a significant lower bandwidth cost (up to a 96% reduction
for f = 0) and a lower replica size (up to a 67.7% reduction for f = 0) when compared
to the add-wins set. This happens primarily because the add-wins set needs to propagate
all elements to all replicas (even the ones that do not fit in the top) while our design
only propagates the required elements to all replicas and the remaining elements are only
propagated to a subset for durability.

LightKone D7.1(v2.0), July 6, 2018, Page 36

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

To
ta

l M
es

sa
ge

 S
iz

e
(M

B
s)

Number of update operations

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

M
ea

n
R
ep

lic
a

S
iz

e
(M

B
s)

Number of update operations

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

Figure 3.2.5: Top-K with removals: total message size and mean replica size with a
workload of 95% adds and 5% removes

When specifically comparing between the various instances of the Top-K with re-
movals with varying degrees of replication, the total message size and mean replica size
increases as expected. We note that, when the data type tolerates up to 2 faults, its mean
replica size reaches 78% of the mean size of the add-wins set, while each element that is
not in the top is replicated only in 60% of the replicas. This happens due to a few rea-
sons: 1) The Top-K with removals must explicitly maintain more information regarding
each element including the replica id and the replica timestamp, and 2) the Top-K with
removals must maintain an explicit registry of removals.

(b) Scalability

To evaluate the scalability of non-uniform replication, we have used the Basho Bench [4]
benchmarking tool developed by Basho Technologies. To use Basho Bench, we devel-
oped a driver that specifies what operations can be executed for our use cases. For using
AntidoteDB’s original CRDT, the driver specification was extended to model the same
semantics as NuCRDTs. To give an example, when modeling a top-K using an add-wins
set, the elements which are no longer part of the top must be removed one by one – this
is done explicitly by the client driver.

We now describe the benchmarking setup. These experiments were ran on Amazon
Web Services EC2, using m3.xlarge machine instances for both the AntidoteDB nodes
and the Basho Bench nodes. All benchmarks were run against 5 AntidoteDB nodes,
each one forming its own data center (containing only one node), resulting in a total
of 5 data centers. The benchmark runs using 5 Basho Bench instances, each one in its
own machine. Each Basho Bench instance spawned a configurable number of clients and
connected to the data center node running in the same EC2 region.

Machines that ran AntidoteDB nodes were launched on the following region/availability
zones: eu-west-1c, eu-central-1a, us-east-1d, us-west-1c, and ap-northeast-1c. Machines
that ran Basho Bench nodes were launched in the same region and availability zone as
the AntidoteDB node they were connecting to. The mean round-trip time over 100 Ping
requests between each machine is shown in table 3.2.1.

Each AntidoteDB node was configured to buffer transactions for a period of 200
milliseconds. All benchmarks ran for 3 minutes. Each data point for each experiment
represents the mean result of three independent runs. Prior to each run, the AntidoteDB

LightKone D7.1(v2.0), July 6, 2018, Page 37

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

eu-west eu-central us-east us-west ap-northeast
eu-west 0.421 22.42 71.537 145.875 210.989
eu-central 22.42 0.417 89.241 156.304 254.216
us-east 71.537 89.241 0.459 61.699 143.058
us-west 145.875 156.304 61.699 0.453 117.695
ap-northeast 210.989 254.216 143.058 117.695 0.493

Table 3.2.1: Mean round-trip time between Amazon Web Services EC2 instances

nodes were shutdown and their data was deleted; the software was then recompiled, the
nodes were relaunched, and the data center nodes were reconnected. This ensured a fair
benchmarking environment.

(b).1 Top-K We now present the evaluation results for the top-K and the add-wins
implementation of a top-K. This experiment used the following configuration: K was
configured to 100, player identifiers were selected with a uniform distribution from a
domain of 10,000, and scores were generated randomly with a uniform distribution from
0 to 250,000. The results are presented in Figure 3.2.6.

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

M
ea

n
La

te
nc

y
(m

s)

Number of clients per data center

 NuCRDT CRDT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35

M
ea

n
Th

ro
ug

hp
ut

 (
op

s/
se

c)

Number of clients per data center

 NuCRDT CRDT

 5

 10

 15

 20

 25

 30

 35

 0 2000 4000 6000 8000 10000 12000 14000

M
ea

n
La

te
nc

y
(m

s)

Mean Throughput (ops/sec)

 NuCRDT CRDT

Figure 3.2.6: Top-K experiments

The results show that our non-uniform replication design scales much better than the
add-wins set-based implementation of top-K. The reason for this is the fact that in the
add-wins-based implementation, it is necessary to remove an element whenever a new
element is added to the top, resulting in a larger number of operations being executed.
Additionally, in our design, as the top is populated with elements with large scores, the
number of operation that are not immediately masked tends to zero.

LightKone D7.1(v2.0), July 6, 2018, Page 38

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

(b).2 Top-K with removals We now present the evaluation results for the top-K with
removals. In this case, we need to maintain all inserted scores as a remove may delete
only some of the scores. The configuration used in the experiments is the following:
K was set to 100, player identifiers were selected with a uniform distribution from a
domain of 10,000, and scores were generated randomly with a uniform distribution from
0 to 250,000. Furthermore, the system was configured to support from zero to two faults
(f = 0, f = 1, f = 2) by propagating masked operations to f replicas. Similarly to the
measurements of total message size and mean replica size, Figure 3.2.7 presents the
results of a workload of 95% of adds and 5% of removes.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

M
ea

n
La

te
nc

y
(m

s)

Number of clients per data center

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 20 40 60 80 100 120 140

M
ea

n
Th

ro
ug

hp
ut

 (
op

s/
se

c)

Number of clients per data center

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

 0

 50

 100

 150

 200

 250

 300

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ea

n
La

te
nc

y
(m

s)

Mean Throughput (ops/sec)

NuCRDT, f=0
NuCRDT, f=1

NuCRDT, f=2
CRDT

Figure 3.2.7: Top-K with removals experiments with a workload of 95% adds and 5%
removes

The results show that both design behave similarly under low load (up to 16 clients).
For a larger number of clients per data center, the mean latency of the add-wins set more
than doubled while the mean latency of the NuCRDT design remained linear. For 128
clients per data center the add-wins set could not keep up with the increasing load and as
result suffered a throughput drop. The NuCRDT design did not exhibit this behavior.

When comparing between the varying degrees of replication both latency and through-
put were initially similar. However, after the number of clients per data center increased
to more than 32, the latency also slightly increased for both f = 1 and f = 2. Corre-
spondingly, the throughput also had a slower growth and could not reach the same value
as f = 0.

We suspect that the marginal increase in scalability for this design is due to the top-
K computation being executed inside the database, which could perhaps be optimized
further.

LightKone D7.1(v2.0), July 6, 2018, Page 39

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

3.3 Yggdrasil
Yggdrasil is a framework designed to aid in the development and execution of distributed
protocols and applications for wireless ad-hoc networks in commodity devices, as the
Raspberry Pi3 - model B. To this end, the Yggdrasil framework provides protocol and
application developers with a set of abstractions that include: an event driven execution
model; low level communication primitives; interaction mechanisms between protocols
and applications; and mechanisms for multi-threaded execution that hide concurrency
issues for the developers. Yggdrasil is reported in detail in D5.1, whose evolution is
detailed in D5.2.

In this Section we report our preliminary experimental evaluation over Yggdrasil.
Our experimental evaluation is divided in two parts. In the first part we discuss the im-
plementation of a popular routing protocol for wireless ad-hoc networks and a moderately
complex application using Yggdrasil. The goal of this first part is to answer the question:
How useful and easy is to leverage Yggdrasil to implement distributed protocols and
applications? The second part of our evaluation is focussed on answering the question:
What is the overhead generated by employing Yggdrasil? To this end, we have conducted
an experimental evaluation that measures the of the amount of time required to deliver a
message to kernel to be sent to the network, with and without employing Yggdrasil. We
also present the observed values of CPU and memory consumptions of this experiment.

3.3.1 Protocol and Application Implementation
To answer the first question, we have conducted two qualitative experiments where we
measured the amount of effort in implementing a protocol and an application in the num-
ber of lines of code. In the following we present our methodology and results.

(a) Experimental Methodology

(a).1 Routing Protocol In the first experiment we have implemented a simplified ver-
sion of a popular routing protocol for wireless ad-hoc networks: Better Approach to Ad
Hoc Networking, or simply B.A.T.M.A.N. using Yggdrasil. The reason for this is two
fold. First, Yggdrasil was missing a routing protocol. Second, we took this opportunity
to compare our implementation of B.A.T.M.A.N. with an existing and well documented
implementation of the same protocol that operates as a kernel module. This implemen-
tation is an adequate term of comparison since it is also written in the C language (we
remind the reader that Yggdrasil is written in C and that currently protocols and applica-
tions also have to be written in C). The baseline implementation of B.A.T.M.A.N. can be
found online at https://www.open-mesh.org/projects/open-mesh/wiki. We note that
we did not study the baseline implementation of the protocol before implementing our
own. Instead our implementation in Yggdrasil was conducted by following the specifica-
tion of the protocol in the RFC [10].

(a).2 Test Application In the second experiment we developed a simple application
that leverages our implementation of B.A.T.M.A.N. and other protocols already imple-
mented in Yggdrasil. This application combines the functionalities of a discovery, broad-

LightKone D7.1(v2.0), July 6, 2018, Page 40

https://www.open-mesh.org/projects/open-mesh/wiki

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

cast, routing, and aggregation protocols, to periodically compute, in a particular node, the
average number of messages sent by each device in a deployment.

The discovery protocol employed in the implementation of the test application is
the exact same employed in the evaluation of MiRAge (described further ahead in this
document), also enriched with fault detection. The broadcast protocol is a simple protocol
based on flooding of the network, where every time a node receives a message for the
first time, it immediately retransmits it. The routing protocol, as stated above, is our own
implementation of the popular wireless ad-hoc routing protocol B.A.T.M.A.N.. Finally,
the aggregation protocol that we employ to aggregate the average number of transmitted
messages is the implementation of GAP used in MiRAge’s evaluation.

In this deployment, each node periodically, and with a given probability, broadcasts
(using the broadcast protocol) a message with random information. The number of mes-
sages broadcast by each node is aggregated in a single node (using the aggregation pro-
tocol), and routed to a backup node (using the routing protocol), as the application exe-
cutes. This test application, although synthetic, presents a moderate level of complexity
that other more realistic applications could also employ.

(b) Experimental Results

(b).1 Routing Protocol Our implementation of B.A.T.M.A.N., after conducting de-
bug and testing, had less than 800 lines of C code. We note that our implementation has
a number of simplifications when considering the original specification however, these
have no significant impact on the execution or correctness of the algorithm. In partic-
ular, our implementation of the protocol’s sliding windows is represented as an array
of shorts (rather than a bit mask), and the messages exchanged between processes are
slightly larger than the original specified messages (however, they are still smaller than
the maximum size of a network frame, 1500 bytes).

When comparing the number of lines of code of our implementation with the existing
baseline implementation, we discovered that, ignoring code specific to the interactions
with the kernel and interfaces, the baseline implementation of the version 4 of the pro-
tocol has more than 2.000 lines of C code. We then inspected the code to understand
the reason for this large number of lines. Some lines are indeed dedicated to optimiza-
tions that we did not implement in our implementation. However, most of these lines
were dealing with low level aspects, such as message serialization, timer management,
concurrency management, network interface management, among others. In Yggdrasil
most of these aspects are handled by the framework through a simple API. This not only
justifies the lower number of lines in our implementation, but also points towards the
adequacy of the abstractions provided by Yggdrasil.

(b).2 Test Application Our implementation of this application, using all protocols as
described above had, after debugging and initial testing, less than 180 lines of C code.
Furthermore, the code was written and debugged in approximately two hours1. We be-
lieve that this is a positive indicator, since the envisioned test application already presents
a moderate level of complexity, and it was possible to code with low effort.

1We do note that the person coding the application was one of the framework developers, and hence
was highly familiar with the code base.

LightKone D7.1(v2.0), July 6, 2018, Page 41

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

3.3.2 Yggdrasil Overhead
To measure the overhead generated by employing Yggdrasil, we have conducted a simple
preliminary experiment where we measured the amount of time required for a message
to be delivered to the kernel to be sent to the network. In the following we detail our
experimental methodology and obtained results for this experiment.

(a) Experimental Methodology

In this experiment we have developed a simple application that sends a message to
the network every second. This application is executed for more than 10,000 seconds
(slightly bellow 3 hours), sending a total of 10,000 messages. This application is imple-
mented and executed in four different settings:

A: The application is not implemented using Yggdrasil, as such it sends messages by
directly interacting with the kernel.

B: The application is implemented using Yggdrasil. The application delegates the func-
tionality of sending the message to the dispatcher protocol of Yggdrasil.

C: This setting is similar to the previous one, with the addition that the application exe-
cutes concurrently with a protocol.

D: This setting is similar to the previous one, with the exception that before the mes-
sage is delivered to the dispatcher protocol it passes through the protocol executing
concurrently, we call this mechanism intercepting events (in this case a message).

The protocol that executes with the application in our experiments is named a ghost
protocol. This is because the protocol does not perform any operation on its own. Hence,
the protocol is configured to remain idle until the application terminates in setting C, to
verify the effects of a protocol executing concurrently; and in setting D, the protocol is
configured to intercept the messages created by the application, to verify the impact of
an event passing through multiple protocols.

We executed these experiments using a Raspberry Pi3 - model B and a GRiSP board.
In each setting we logged to a file a timestamp immediately before the creation of the
message, and a timestamp immediately after the message was delivered to the kernel to
be sent to the network. We correlated these data points for each message offline. Fur-
thermore, during each experiment, the CPU and memory consumptions where gathered
using standard profiling tools (e.g., perf, top, built-in tools in RTEMS). In the following
we present the obtained results.

(b) Experimental Results

Table 3.3.1 reports the 95th percentile delay of sending a message in milliseconds for
each of our experiments detailed above. The results shows that employing Yggdrasil in
a Raspberry Pi incurs in an increased delay of around 0.07 milliseconds, whereas in a
GRiSP board, the increased delay is around 1.15 milliseconds. This is to be excepted as

LightKone D7.1(v2.0), July 6, 2018, Page 42

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

the GRiSP board has less resources than the Raspberry Pi nonetheless, both present an in-
crease of 60% of delay. The overhead increase is to be expected, since more mechanisms
are provided to the application. We believe that the 60% overhead could be decreased
with simple optimizations to the implementation of the framework, such as reducing the
amount of systems calls necessary to manage the events within the framework.

A: W/out Yggdrasil B: W/ Yggdrasil C: W/ Ghost idle D: W/ Ghost intercept
Raspberry Pi 0.110729 0.182161 0.186275 0.211146
GRiSP 1.983731 3.137988 3.155992 3.418891

Table 3.3.1: 95th percentile delay of sending a message in milliseconds

Executing another protocol concurrently results in a relatively small overhead that is
not significant in both platform. When the protocol intercepts the message it results in
an overhead of 10%. This overhead is justifiable by the fact that the intercept behavior
requires two additional memory copies for the message to be delivered to the kernel to
be sent to the network.

Regarding the CPU and memory consumptions we have observed few variations of
values. The CPU consumption in the Raspberry Pi, which has a CPU with four cores
with a clock rate of 1.2Ghz, was observed to be 0.01%, while in the GRiSP board, which
has a microchip CPU with a clock rate of 300Mhz, it was observed to be approximately
1%. This low CPU usage is caused by the process being idle most of the time, having
small spikes of usage. This however, is to be expected has most of the components in
Yggdrasil are idly waiting for events.

Regarding memory consumption, we observed that the processes used approximately
700 KiB (1 KiB = 1024 bytes) of resident memory in both devices. This, in the GRiSP
board, does not take into consideration the memory footprint of RTEMS. The memory
footprint of Yggdrasil is relatively low (bellow 1 MB) nonetheless, we believe that we
can improve this by applying simple optimizations to the event queues used by protocols
(e.g., not initializing parts of the event queue that are not relevant for the protocol), as
they are the data structures with the highest footprint of memory (higher than 15,000
bytes).

Overall, our first assessment shows that Yggdrasil presents an acceptable overhead
for the functionalities it provides to protocols and applications to lower the effort of
implementation for developers, with a margin of opportunity to improve its performance.

3.4 Mirage
For supporting aggregation in light-edge nodes, we have design the Multi Root Aggregation
protocol, or simply MiRAge. Our protocol is inspired in the design of GAP [5], but gen-
eralizes its design to remove the dependence of a single root. To this end, our protocol
leverages a self-healing spanning tree to support efficient continuous aggregation. In our
protocol, all nodes compete to build a tree rooted on themselves. This competition is
controlled via the identifier of each node (a large random bit string) and a monotonic
sequence number (i.e., a timestamp) controlled by the corresponding root node. Addi-
tionally, our protocol was designed to ensure that all nodes in the system are able to

LightKone D7.1(v2.0), July 6, 2018, Page 43

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

1
24 22

20

9
6

5 16
1011

4
2

18

8
13 12

14
15

7

19

17

23

21

3

(a) Deployment Configuration

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(b) Average Error in the Aggre-
gated Value

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512

A
ve

ra
g
e
 N

u
m

b
e
r

o
f
M

e
ss

a
g
e
s

 S
e
n
t
p
e
r

N
o
d
e

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(c) Total number Messages
sent by all nodes

Figure 3.4.1: Disperse Deployment

continually compute and update the result of the aggregation function.
MiRAge is presented in deliverable D5.2. In this section, we present an extensive

experimental evaluation of MiRAge comparing its performance against state-of-the art
solutions for continuous aggregation.

We start by noting that, contrary to the large body of the literature regarding wireless
ad-hoc protocols, our experimental evaluation does not resort to simulation. Instead,
we have implemented prototypes of both MiRAge and the relevant competing baselines
using the C language. All protocols rely on similar code bases, being implemented on
the Yggdrasil framework reported in D5.1 and D5.2. All also use the same fault detector
mechanism, and execute in similar conditions. We believe that this is an essential step to
demonstrate the applicability of our solution.

In the following, we discuss in more detail our experimental methodology and present
our experimental results composed of two different deployments that exercise these pro-
tocols in varied conditions. These include fault-free, input value changes, and multiple-
node failures scenarios. All experiments reported here where nodes were scattered across
a floor of a building were performed with the help of the current prototype of the Yg-
gdrasil Control Process, introduced in D5.2.

3.4.1 Experimental Methodology
As discussed above, we have conducted our experimental evaluation by implementing
prototypes of both our protocol and relevant baselines that represent different alternatives
found in the literature. All protocols were implemented in an event-driven way, having
a dedicated thread that handles events. These events can either be timers (for executing
periodic tasks), message reception, or notifications of failures from a failure detector.
This implementation strategy minimizes problems that arise from concurrency within
the scope of the protocol execution. All protocols used in our evaluation resort to the
same unreliable failure detector, configured with DD = 1s and Kf d = 10. In practice this
means that each node disseminates an announcement with its own identifier every second,
and that a node a is suspected to have failed by node b when b is unable to receive an
announcement from a for a period longer than 10 seconds.

The baselines employed in our experimental work are Flow-Updating [7] which is
a protocol that can compute the average function; a version of LiMoSense and [6] pub-

LightKone D7.1(v2.0), July 6, 2018, Page 44

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

lished by the authors, where counters maintained by nodes are never garbage collected.
LiMoSense is a representative of the well known Push-Sum protocol [8] that can compute
the sum, count, and average functions, that is enriched to ensure fault tolerance; GAP [5]
which is the protocol that mostly resembles our own solution, being able to compute any
aggregation function but unfortunately, unable to tolerate the failure of its static tree root.
Since GAP does not enable every node in the network to obtain the aggregated value,
we also developed a simple variant of GAP, that we named GAP+Bcast where the root
of the tree also piggybacks its aggregated value in all messages disseminated by it. This
value is then propagated in piggyback along the tree used by GAP, enabling all nodes to
learn the result of the aggregation. All protocols were configured to perform their peri-
odic communication step every two seconds. In both GAP and GAP+Bcast experiments
the root is fixed in experiments with faults, and randomly assigned in experiments with
no faults.

All experiments reported here were conducted by executing each protocol in a fleet
of 24 Raspberry Pi3 - Model B. All communication among nodes is performed through
a wireless ad hoc network using one-hop broadcast.

While MiRAge can easily be employed to compute any arbitrary aggregation func-
tion, in our experiments every protocol was configured to compute the average. The
initial input values of nodes were fixed, being the numbers 1 to 24 attributed statically
to each of the 24 Raspberry Pis. Hence, the average value computed based on the initial
input values is 12.5. Each experiment reported here was executed three times. Protocols
were rotated between these executions to amortize the effects of external and uncontrol-
lable factors. Results show averages of results obtained across multiple runs.

We have conducted experiments in two different settings:
Disperse Deployment: In this deployment, we have positioned the nodes across mul-
tiple rooms in two hallways in our department building. Figure 3.4.1a illustrates the
distribution of nodes in the space. Each of the hallways has approximately 30m. This is
a particularly challenging environment, as there are multiple factors that affect transmis-
sions among nodes in a very dynamic fashion. This deployment attempts to illustrate a
scenario where the radio signal strength is highly variable among devices, which we have
observed that could trigger our fault detector multiple times.
Dense Deployment with Overlay: In this deployment, we have positioned all nodes
within a single room. However, we have added to all test prototypes a filter that restricts
at each node the set of nodes from which it can receive messages. Effectively, this pro-
duces a logical network that defines (potential) neighboring relationships among nodes.
This overlay is represented graphically in Figure 3.4.2a. We note that in this setting
transmissions by any device can still produce collisions. This setting tries to illustrate a
scenario where there are multiple sources of interference that can produce a somewhat
higher number of collisions in the wireless medium.

3.4.2 Experimental Results

We now report our experimental results. In our experimental work we focus on the Aver-
age Error in the Aggregated Value, abbreviated AvgErr, that illustrates how far on average

LightKone D7.1(v2.0), July 6, 2018, Page 45

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

1

5

3 4 6

2 7

10

11

8

9

24

14

15 16 19

17

181312

20

2221

23

(a) Overlay Topology

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128 256 512

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(b) Average Error in the Aggre-
gated Value in Fault-free Sce-
nario

Figure 3.4.2: Deployment Configuration with an Overlay Topology

 0

 10

 20

 30

 40

 50

 60

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(a) 1 node

 0

 50

 100

 150

 200

 250

 300

 350

 400

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(b) 12 nodes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(c) 24 nodes

Figure 3.4.3: Average error in aggregated value with dynamic input values at different
number of nodes

are all nodes from the correct average value, being defined as:

AvgErr = Ân
i=1(|Avgreal �Avgi|)

n⇥Avgreal
⇥100

where n represents the total number of nodes, Avgreal is the current average value con-
sidering all input values, and Avgi represents the current average computed by node i.
We present this normalized for the real average value. Intuitively, in a scenario where all
nodes have computed the correct average, the AvgErr will be 0% which is the ideal sce-
nario. On the other hand, when the real average value is 12.5 and the average computed
value by all nodes is 25, the AvgErr will be 100%, where an average computed value of
50 would yield a AvgErr of 300%. Additionally, we also measure the total number of
messages transmitted by all nodes in function of time. This is a measure of the overhead
produced by each protocol.

(a) Disperse Deployment

Figure 3.4.1 presents the schematics and results for our experiments in the disperse de-
ployment. In this experiment we have deployed the nodes as represented in Figure 3.4.1a.
Each experiment was conducted for a period of 10 minutes (600 seconds).

Figure 3.4.1b reports the measured AvgErr across all nodes as the experience pro-
gresses. Note that the x-axis is in logarithmic scale, as the main point of this plot is to

LightKone D7.1(v2.0), July 6, 2018, Page 46

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(a) 1 node

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(b) 6 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

(c) 12 nodes

Figure 3.4.4: Average error in aggregated value with variable number of node failures

show the convergence of nodes towards the correct average, a process that is more no-
ticeable at the start of the experiment. Results show that Flow-Updating is the protocol
that converges more slowly towards the correct average, having an AvgErr in the order of
10% even after more than one minute of execution.

GAP converges relatively fast towards an AvgErr close to 15% and stabilizes in this
value. This is expected, as GAP was not designed to provide all nodes in the system
with the aggregated value. GAP+Bcast and MiRAGE show the best performance, as they
converge quite fast to an AvgErr of approximately 4%. Both algorithms are unable to
compute the correct value due to the fact that the communication among many pairs of
nodes is highly unstable, leading to a high level of message loss (we have confirmed
this by inspecting logs). However, we note that, contrary to MiRAge, GAP+Bcast is not
fault-tolerant, as the failure of the root would make it impossible for any node to compute
the correct value.

Finally, and interestingly, LiMoSense appears to converge to a similar value to those
computed by MiRAge and GAP+Bcast, but at some point the AvgErr starts to increase
without the protocol being able to regain an adequate AvgErr. We inspected this case
carefully and discovered that this happens due to an aspect in the design of LiMoSense,
that tries to compensate transferred values when a node failure is detected. Unfortunately,
in this environment, and due to the instability of the wireless medium, nodes detect each
other as failed in an asymmetric way. This leads one of the nodes to apply the com-
pensation mechanism while the other does not. This produces an error that propagates
towards the entire network, leading all nodes to compute an incorrect average of zero.
While LiMoSense is indeed fault-tolerant, it was not designed to tolerate asymmetric
communication links.

Figure 3.4.1c shows the total number of messages sent over time for each protocol.

 0

 10

 20

 30

 40

 50

 60

 70

 300 310 320 330 340 350 360

A
ve

ra
g
e
 E

rr
o
r

in
 A

g
g
re

g
a
te

d
 V

a
lu

e
 (

%
)

Time (s)

LiMoSense
GAP

GAP+Bcast
Flow-Updating

MiRAge

Figure 3.4.5: Average error in aggregated value with 12 link fault

LightKone D7.1(v2.0), July 6, 2018, Page 47

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

The results show that MiRAge, Flow-Updating, and LiMoSense have exactly the same
cost. This is expected as all protocols were configured to exchange information at the
same rate. GAP and GAP+Bcast issues more messages at the start of the experiment, as
they send bootstrap messages to newly found nodes. GAP stops transmitting messages
when values become stable, reducing GAP’s communication overhead. However, this
could lead to missed updates due to message loss, and as such, GAP+Bcast was modified
to cope with this issue by always transmitting messages, converging to a slightly higher
cost than the rest of the protocols.

In all experiments that we conducted, communication overhead always followed this
pattern and hence, we omit those results from the following sections.

(b) Dense Deployment with Overlay

In this setting we have conducted multiple experiences. We note that while collisions in
the wireless medium are highly probable, asymmetric communication and fault detection
is less likely. We start by examining the behavior of protocols in a fault free environment.
Then we explore the effect of three dynamic aspects: i) input value change; ii) node
failure; and iii) link failure. All experiments were again conducted for a period of 10
minutes. In experiments where we introduce dynamic aspects, these happen around 5
minutes (300 seconds) in the experiment.

(b).1 Fault-Free Scenario Figure 3.4.2a reports the overlay configuration employed
in this scenario. Figure 3.4.2b presents the AvgErr in a fault free execution for all proto-
cols.

The results show that in this setting Flow-Updating quickly starts to converge towards
a perfect aggregate value. MiRAge converges somewhat slower but reaches an AvgErr
of 0% slightly before. This happens due to the fact that MiRAge uses a deterministic
tree topology to achieve convergence, whereas Flow-Updating relies on an iterative (av-
eraging) technique that iteratively approximates towards the correct value. The results
of GAP are consistent with those presented above, while GAP+Bcast converges towards
the correct value across all nodes, albeit, slightly slowly than MiRAge. LiMoSense in
this setting, where asymmetric communication is less likely, is able to converge to a good
approximation of the value although, taking much more time.

(b).2 Dynamic Input Values In these experiments we have introduced variations on
the input value of different amounts of nodes in the system. We have conducted experi-
ments where we modify the input value of 1, 12, and 24 nodes concurrently. Results are
summarized in Figure 3.4.3 and show consistent results for all experiments. LiMoSense
is the protocol that is more susceptible to input value variations, whereas MiRAge, Flow-
Updating, and GAP+Bcast all present somewhat similar results, being able to converge
to the new aggregate result in less than 20 seconds. The reason why only these three
protocols are able to cope in a timely fashion with the change of input values is nuanced.
These protocols are the only whose computation of the aggregate result directly depends
on the (original) input value. This implies that as soon as the input value changes, nodes
start propagating aggregate information that reflects completely the change. Therefore, it

LightKone D7.1(v2.0), July 6, 2018, Page 48

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

suffices that messages propagate through the system to ensure that this effect reaches all
nodes.

(b).3 Node and Link Failures In these experiments we introduce a variable number
of node faults and measure the impact on the AvgErr. In the first experiment we intro-
duced concurrently a number of node crashes that vary from 1, 6, and 12 nodes around
300 seconds in the experience. In these we have fixed the root of the trees used by GAP
and GAP+Bcast to be node 1, and made sure that this node was not selected to become
faulty (as these protocol would not tolerate that fault). Figure 3.4.4 depicts the results for
these experiments. In the second experiment we introduce 12 concurrent link failures,
where 12 pairs of nodes become permanently unable to communicate. This simulates
the existence of obstacles or radio pollution in the environment. Figure 3.4.5 reports the
obtained AvgErr in this scenario.

In both faulty scenarios (reported in Figures 3.4.4 and 3.4.5), all protocols suffer a
significant increase in the AvgErr after the introduction of faults. With the exception of
LiMoSense, all protocols can converge to the new aggregated value. LiMoSense takes
significantly more time to converge because, following the Push-Sum strategy, at each
communication step it only exchanges information with a single neighbor. While Mi-
RAge is the protocol that consistently shows a higher AvgErr immediately after faults, it
is also the protocol that converges faster. This happens due to our mechanism to manage
and repair the support tree in the presence of faults, which reconfigured the tree in an ex-
pedite way, during this period however, computed results are affected by the (temporary)
inconsistency of the tree topology.

LightKone D7.1(v2.0), July 6, 2018, Page 49

CHAPTER 3. EVALUATIONS IN AN ACADEMIC CONTEXT

LightKone D7.1(v2.0), July 6, 2018, Page 50

Chapter 4

An Overview of Formal Evaluations

The purpose of this chapter is to discuss how formal method will be used in the evaluation
phases of the Lightkone project. Formal methods are mathematical and logic models of
the systems being designed and studied. The expectation is that these methods provide
useful insight into the behavior of complex systems. The results can contribute to a higher
level of confidence in the chosen approach or in defining the likely pitfalls. Ideally, formal
methods, well applied, should results in more reliable and rapidly developed systems.
One of the key areas of research in the Lightkone project is the implementation and
application of formal methods for the design and evaluation of distributed systems and
notably edge systems. The ongoing work is described in much greater detail in WP 2.2,
but here their utility in the evaluation phases of the project will be briefly discussed.

4.1 Tools for Formal Models
A number of different tools for formal modeling have been developed for many years
with the earliest temporal logic models dating from the 1950s. In spite of their long
history and the existence of credible tools, the definition of models remains a something
of a daunting task. The writing of appropriate specifications remains a fairly academic
pursuit. One of the goals of Lightkone is to bring these methods closer to the selected
real-world use cases.

4.1.1 TLA+ and TLC
The TLA+ formal specification language allows the key invariants of a particular use case
to be expressed and then used with the TLC model checker which permits the state space
of all possible outcomes to be studied in order to determine under what conditions the
invariants are violated. This approach has been applied to the Guifi network where the
intention is to greatly improve the reliability of the system monitoring. One key invariant
is to assure that all components of the system are being monitored by at least one agent,
even in the event of failures. Testing of all possible failure scenarios is impossible so this
approach is expected to provide meaningful feedback to guide the physical evaluation
phases discussed in this document. The initial TLA+ models are somewhat simplistic
and as their work progresses, they are expected to progress to greater levels of detail.

51

CHAPTER 4. AN OVERVIEW OF FORMAL EVALUATIONS

4.1.2 Abstract Execution Formulations
As are the other approaches, the abstract execution approach is described in greater detail
in WP 2.2. Generally speaking the approach consists of defining a logical chain of exe-
cutions that make up transactions. The distinction is made between events that are visible
to all and those that are not and must be arbitrated using more sophisticated consensus
or resolution methods. This approach has been applied to the Scality use case and has
already provided good insights into what will be possible and realistic and areas that need
to be evaluated with greater care in the upcoming physical evaluation phase. The abstract
execution model allow tests to be derived that could potentially cause consistency issues
and assist in the verification of the correctness of the models during the evaluation. The
results have already guided the selection of a replication model using Antidote across
multiple data centers to provide relatively strong consistency models that can be tested
during the evaluations.

4.1.3 Timed Automata Formalization
The timed automata approach is one of the most well known, based on a finite set of
clocks and temporal logic. In some ways this approach appears straightforward as the
before and after of timed events is part of daily life, but concurrent timing issues can be
exceedingly complex. These methods seem well adapted to certain use cases and notably
the Stritzinger use case where time optimization is a key priority. As discussed in WP
2.2, the UPPAAL tool has been applied to the problem. This modeling has already given
results by clarifying the likely limits of gains that can be expected in the physical system.
These results will prove useful in the practical phase of the evaluations in determining
how close to optimum outcomes the real system is able to perform. For the Gluk use
case, the need is defined by the requirement of having timely results, and specifically in
determining important stage changes in a timely fashion. A somewhat different temporal
method has been applied here in referred to as Discrete Event Simulation (DES). Early
results of the use of this modeling approach have provided insights into the appropriate
redundancies in the sensor and servo networks to guarantee robust outcomes. The re-
sults of this analysis will also be used in better defining the failure scenarios used in the
evaluation phase of the project. The evaluations for this particular use case will be less
based on performance and more based on robustness using low power and potentially
unreliable components.

LightKone D7.1(v2.0), July 6, 2018, Page 52

Chapter 5

Evaluations and Security

Digital security is under ever-increasing scrutiny and plays an essential role for the tech-
nology and systems developed in Lightkone. Even though the main focus of this evalua-
tion work-package is the correctness, performance and efficiency of the developed solu-
tions, we can consider performing a selection of suitable security tests or, alternatively,
an in-depth review of potential security risks.

The security testing strategies could include:

• traditional penetration tests,

• code and security reviews, or

• use of industry standard verification tools such as wireshark, w3af, nmap.

Deliverable D3.2 contains a document with a case-by-case threat identification for
each of the industrial use cases. This threat analysis can provide guidance for devel-
oping specific security evaluation tests. At the very least, during the evaluations of the
physical pilot systems, a review of these threats will be conducted and reported. A com-
plete review of system security in the event that one or several of these systems become
commercially viable would be appropriate, but it is generally far more credible to have a
security audit performed by an independent 3rd party. Such an effort was not budgeted
for this project and likely would only be appropriately carried by the partner likely to
benefit commercially from the developments.

Within the context of the project a review of the threat models described in D3.2 will
be performed for each of the solutions providing recommendations in response to the
most likely threat vectors.

In the case of the Gluk and Stritzinger use cases, security is a concern as in all en-
vironments, but in manufacturing and agricultural settings security has historically been
handled via physical access restrictions rather than deep security of information systems.
Securing ad-hoc and self organising networks is a useful topic, but in the scope of the
evaluations performed here, no additional security evaluation is planned.

In the context of Scality’s use case, where the AWS S3 protocol has been imple-
mented, extensive security recommendations have been provided in documents such as
this: AWS Security Whitepaper. Their recommendations point out a notable challenge
via the very sophisticated rights manangement system referred to as IAM. This technol-
ogy offers very complete and granular control of all resources, but in so doing creates a

53

https://d0.awsstatic.com/whitepapers/Security/AWS%20Security%20Whitepaper.pdf

CHAPTER 5. EVALUATIONS AND SECURITY

great deal of complexity and many opportunities for configuration errors. This complex-
ity is often pointed out as a key risk vector in using their system as configuration errors
and misunderstandings are common. In light of these considerations, a minimimal and
simple configuration will be used during testing as they provide a baseline for typical
user behaviours. No specific experiments are planned to further validate the security of
this protocol.

In the case of the Guifi no specific security investigations are planned during the
evaluation phase. While security is very important in this kind of environment, the scope
of the investigations planned will consume all resources available within the context of
the project.

LightKone D7.1(v2.0), July 6, 2018, Page 54

Chapter 6

Summary

As has been discussed in this document, there are a number of evaluations that will be
performed in the second half of the project. The other work streams are coming together
to allow the deployment of the different pilot implementations, that will be evaluated.
The majority of the work on these evaluations remains to be done, but this is as expected.
A significant amount of progress has been made on evaluating the theoretical methods as
was discussed in chapter 3. These evaluations do indicate that progress has been made
both in the efficacy of the methods as well as understanding their limitations. These
tools will be used extensively in the implementation of the evaluation platforms across
the different use cases. As was described in this document, each of the four different
use cases has a plan set forth to provide concrete results before the end of the project.
With the official adoption of the GDPR across the EU, questions of security have grown
in importance since the initiation of this project. An evaluation of the types of risks to
be considered was included here, and ongoing efforts are being made to include more
analysis of questions of security in this evaluation.

55

CHAPTER 6. SUMMARY

LightKone D7.1(v2.0), July 6, 2018, Page 56

Bibliography

[1] Google Drive Realtime Playground. github.com/googledrive/

realtime-playground.

[2] P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda, L. Miori, M. An-
griman, J. Rikkilä, X. Wang, K. Hamily, and S. Bugoloni. Affordable and energy-
efficient cloud computing clusters: The bolzano raspberry pi cloud cluster experi-
ment. In 2013 IEEE 5th International Conference on Cloud Computing Technology
and Science, volume 2, pages 170–175, Dec 2013.

[3] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data
types. J. Parallel Distrib. Comput., 111:162–173, 2018.

[4] Basho Technologies, Inc. Basho Bench.

[5] Mads Dam and Rolf Stadler. A generic protocol for network state aggregation. self,
3:411, 2005.

[6] Ittay Eyal, Idit Keidar, and Raphael Rom. Limosense: live monitoring in dynamic
sensor networks. Distributed computing, 27(5):313–328, 2014.

[7] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. Fault-tolerant aggrega-
tion by flow updating. In Twittie Senivongse and Rui Oliveira, editors, Distributed
Applications and Interoperable Systems, pages 73–86, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[8] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate in-
formation. In 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings., pages 482–491, 10 2003.

[9] David Navalho, Sérgio Duarte, and Nuno Preguiça. A Study of CRDTs That Do
Computations. In Proc. 1st Workshop on Principles and Practice of Consistency
for Distributed Data, PaPoC ’15, 2015.

[10] Axel Neumann, Corinna Aichele, Marek Lindner, and Simon Wunderlich. Better
Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.). Internet-Draft draft-
openmesh-b-a-t-m-a-n-00, Internet Engineering Task Force, March 2008. Work in
Progress.

[11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
Replicated Data Types. In Proc. 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems, SSS’11, 2011.

57

github.com/googledrive/realtime-playground
github.com/googledrive/realtime-playground

BIBLIOGRAPHY

LightKone D7.1(v2.0), July 6, 2018, Page 58

Appendix A

List of acronyms

AWS Amazon Web Services
CN Community Network
DIY do-it-yourself
GCP Google Cloud Platform
S3 Simple Storage Service
SBC Single-Board-Computer

59

	Introduction
	Summary of Deliverable Revisions
	Relation to other WPs
	Topics discussed in this report
	Methodologies

	Evaluation plans for the Use Cases
	Gluk Specific Evaluations
	Use case overview
	Evaluation Objectives
	Experiment Design
	Timeline
	Experiment description

	UPC's specific evaluations
	Performance evaluation objectives
	Metrics and criteria

	Edge node hardware selection
	x86-based SBCs and mini-PCs
	ARM-based SBCs

	Testbed for experimental evaluation

	Scality Specific Evaluations
	Use case overview
	Evaluation Objectives
	Experiment Design
	Architecture
	Experiment Description and metrics
	Tools

	Stritzinger Specific Evaluations
	Use case overview
	Distributed RFID Cache

	Evaluation Objectives
	Experiment Design
	Timeline
	Architecture
	Experiment Description
	Further Contributions
	Smart Metering Use Case
	GRiSP
	LASP on GRiSP
	Antidote on GRiSP
	GRiSP for research outside of LightKone
	GRiSP for education
	Improvements to Erlang transparent distribution protocol
	IEEE 802.15.4 Protocol Stack for GRiSP

	Evaluations in an Academic Context
	Legion
	Designing Applications
	Experimental evaluation

	Antidote with Non-uniform Replication
	Simulation
	Top-K with removals
	Top Sum

	AntidoteDB
	Dissemination overhead and replica sizes
	Top-K
	Top-K with removals

	Scalability
	Top-K
	Top-K with removals

	Yggdrasil
	Protocol and Application Implementation
	Experimental Methodology
	Routing Protocol
	Test Application

	Experimental Results
	Routing Protocol
	Test Application

	Yggdrasil Overhead
	Experimental Methodology
	Experimental Results

	Mirage
	Experimental Methodology
	Experimental Results
	Disperse Deployment
	Dense Deployment with Overlay
	Fault-Free Scenario
	Dynamic Input Values
	Node and Link Failures

	An Overview of Formal Evaluations
	Tools for Formal Models
	TLA+ and TLC
	Abstract Execution Formulations
	Timed Automata Formalization

	Evaluations and Security
	Summary
	Bibliography
	List of acronyms

