
Project no. 732505
Project acronym: LightKone
Project title: Lightweight computation for networks at the edge

D6.2: New concepts for heavy edge computing

Deliverable no.: D6.2
Title: New concepts for heavy edge computing
Due date of deliverable: January 15, 2019
Actual submission date: January 15, 2019

Lead contributor: TUKL
Revision: 2.0
Dissemination level: PU

Start date of project: January 1, 2017
Duration: 36 months

This project has received funding from the H2020 Programme of the European Union

LightKone Deliverable D6.2(v2.0), January 15, 2019



Revision Information:

Date Ver Change Responsible
Jun 30, 2018 1.0 1st version of this deliverable TUKL
Jan 15, 2019 2.0 2nd version of this deliverable for resubmission TUKL

Revision information is available in the private repository https://github.com/LightKone/
WP6.

Contributors:

Contributor Institution
Annette Bieniusa TUKL
Deepthi Akkoorath TUKL
Peter Zeller TUKL
Mathias Weber TUKL
Albert Schimpf TUKL
Server Khalilov TUKL
Dilan Shaminda TUKL
Nuno Preguiça NOVA
Roger Pueyo Centelles UPC
Felix Freitag UPC
Leandro Navarro UPC
Roc Messeguer UPC
Ilyas Toumlilt Sorbonne Universite
Saalik Hatia Sorbonne Universite
Dimitrios Vasilas Scality
Marc Shapiro Sorbonne Universite / Inria

LightKone D6.2(v2.0), January 15, 2019, Page 2

https://github.com/LightKone/WP6
https://github.com/LightKone/WP6


CONTENTS

Contents

1 Executive summary 1
1.1 Project Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction 3
2.1 Reference architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Relation with other WPs . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Summary of Deliverable Revision . . . . . . . . . . . . . . . . . . . . . 4
2.4 Outline of this deliverable . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Progress and Plan 6
3.1 Partial replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

(a) EdgeAnt: Partial replication at client-side . . . . . . . . . . . . . 6
(b) WebCure: Partial replication for web applications . . . . . . . . . 7

3.2 Challenges in Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 8
(a) Access control for weakly-consistent data stores . . . . . . . . . 8
(b) Antidote Query Language . . . . . . . . . . . . . . . . . . . . . 9
(c) Strong Consistency for Antidote . . . . . . . . . . . . . . . . . . 11

3.3 Plan for final year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Software Deliverables 13
(a) Antidote Playground . . . . . . . . . . . . . . . . . . . . . . . . 13
(b) Improvements to CRDT library . . . . . . . . . . . . . . . . . . 14
(c) Specification of Antidote back-end interface . . . . . . . . . . . . 15
(d) DC management API . . . . . . . . . . . . . . . . . . . . . . . . 15
(e) Test system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(f) Go client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(g) REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Industrial use cases 18
5.1 Monitoring Guifi.net community network . . . . . . . . . . . . . . . . . 18
5.2 Building a cross-cloud index for Scality’s federated metadata search . . . 20

6 State of the art 24

7 Exploratory work 29
(a) Partial replication on the servers . . . . . . . . . . . . . . . . . . 29
(b) PoR Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Publications and Dissemination 32
8.1 Refereed conference and workshop papers . . . . . . . . . . . . . . . . . 32
8.2 Under submission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4 Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

LightKone D6.2(v2.0), January 15, 2019, Page 3



CONTENTS

1 Executive summary
Heavy-edge computing subsumes scenarios where the communication occurs primarily
between devices from two different categories. Following the classification presented in
the reference architecture in D3.1, this subsumes setups with Fat vs Thin, Fit vs Thin, or
Fat vs Fit devices. Fat devices, for example, include cloud-based server deployments; thin
devices comprise IoT and mobile devices with substantially less capacities; fit devices
fall into the area in-between (e.g. routers). Based on their different computational power,
storage capacity, etc., the basic communication patterns typically follow a client/multi-
server setup. The heterogenous distribution of capacities in heavy-edge systems require
an according distribution of tasks within the system. The major topic in this deliverable
are distributed storage schemes for heavy-edge scenarios that allow for partial replica-
tion. The challenge hereby is to enable an efficient replication scheme that provides the
consistency guarantees such as transactional causal consistency also at the client.

The core contributions of this deliverable can be classified into four categories:

• EdgeAnt and WebCure target partial replication on fit and thin devices with Anti-
dote running on a fat device acting as a server.

• Our work on different aspects of consistency under high availability has continued
in the area of access control and the Antidote Query Language. Further, we are
working on an implementation of strong consistency mechanisms for Antidote and
Partial-Order-Restrictions Consistency, both providing mechanisms to implement
the Just-Right-Consistency paradigm (cf. D4.1.).

• We further report on related extensions, adaptations, and maintenance tasks on
AntidoteDB and related software artifacts that are affiliated with the Lightkone
Reference Architecture (LiRA).

• We finally present the reports on the design and implementation of the industrial
use cases on implementing a monitoring system for the Guifi network (UPC) and
the Proteus framework for federated metadata search in cross-cloud indices (Scal-
ity).

1.1 Project Milestones
D6.2. reports on the results achieved for Milestone MS4 targeted for month 18. Milestone
MS4: Heavy edge applications are successful subsumes the design and implementation
of the applications and the realisation of the needed infrastructure. The description of
work breaks this milestone into the following subtasks:

• Realisation of industrial applications by partners Scality and UPC.

• Realisation of selected concepts for heavy-edge computation on top of AntidoteDB
to make them available to the scientific community and allow for open evaluation
by the academic partners.

In D6.1., the plans for the industrial use cases by Scality and UPC have been intro-
duced. For D6.2., we report in Section 5.1 on the prototypical implementation of the
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monitoring application for the Guifi.net community network. The second industrial use
case is a cross-cloud index for Scality’s federated metadata search. For D6.2., the use
case has been refined and detailed; Section 5.2 presents the design of the Proteus frame-
work and an implementation plan.

The development of the use case applications has already lead to several extensions
and improvements on the AntidoteDB platform, including the development of a REST
API, a Go client, extensions to the API for setup and support for live monitoring. Fur-
ther, we improved accessibility of AntidoteDB by providing a revised webpage, better
documentation, different Docker images and interactive tutorials with the Antidote Play-
ground. To facilitate the development of new features, several components are undergo-
ing refactoring such as the test system, the CRDT library and the storage back-end. A
detailed report is given in Section 4.

As of month 18, we argue that the milestone MS4 has been reached by 80%, given
the preliminary status of the Scality use case.
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Figure 2.1: LightKone Reference Architecture: Architecture View.

2 Introduction

2.1 Reference architecture
The Lightkone Reference Architecture, presented in D3.1, categorizes different forms
of edge computing that span a spectrum from light to heavy edge (see Fig. 2.1). WP6
targets heavy-edge computing where the communication occurs primarily between de-
vices from two different categories. As outlined in the description of work, WP6 deals
primarily with storage solutions for heavy-edge scenarios. In such a setting, the more
powerful and reliable “fat” nodes, such as cloud or private data centers, typically are re-
sponsible for expensive computational tasks and persistent storage of associated data. To
prevent unavailability in cases of node failure or network partition, we want to enable
“medium” nodes placed at the edge to continue operating using locally cached data. The
challenge hereby is to prevent or resolve conflicts on read and write access, by providing
appropriate consistency guarantees and prevent data loss.

The work in WP6 is centered around with the following four artifacts:

• AntidoteDB is a geo-replicated cloud database based on the principle of synchroni-
zation-free programming. It offers a CRDT data model with highly-available trans-
actions, and allows to combine different consistency guarantees that help to main-
tain typical application invariants. AntidoteDB supports both replication of data
across different datacenters and sharding of the data space within a data centre.
Application servers can interact with single Antidote nodes via different client li-
braries.

• EdgeAnt is a client-cache storage that ensures the same consistency and conver-
gence properties as AntidoteDB while supporting partial replication on client side
in a fault-tolerant way. EdgeAnt instances are expected to run on medium nodes
interacting with a deployment of AntidoteDB as a back-end storage on the cloud.
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• Similar to EdgeAnt, the WebCure framework provides client-side partial repli-
cation, but targeting web applications. It supports the development of progressive
web applications through transparent interaction with an offline cache. It also relies
on AntidoteDB as corresponding cloud database.

• Proteus is a geo-distributed system for analytics computations on federated data
stores. It maintains materialized views and performs stateful data-flow computa-
tions. Proteus can support any combination of sharding, partial or full replication,
and federation of data stores, thus enabling deployment on both fat and medium
nodes.

In the first deliverable D6.1 for WP6, we outlined the work plan for WP6. We moti-
vated the requirement for partial replication on client-side and highlighted the limitations
of classical client-server interactions for geo-replicated cloud datastores, such as dynamic
access control policies, query processing, and verification of application invariants. The
report D6.2 now presents a supplementary discussion for state-of-the-art in partial repli-
cation, hybrid consistency for applications on geo-replicated datastores, and multi-cloud
query federation.

We further report on the progress in the period M13-M18 for WP6. The focus hereby
is on the four core artifacts, AntidoteDB, EdgeAnt, WebCure, and Proteus, and their
exploitation in the industry partners’ use cases.

2.2 Relation with other WPs
The work described in D6.2. has strong relations to WP2 where the requirements for
the industrial use cases were introduced and formalized. The models have been refined
and in parts already implemented as prototypes. The reference architecture developed in
WP3 puts the heavy-edge scenario in context and describes the software artifacts and use
cases in a broader context. WP6 further benefits from the development and improvement
of CRDTs and communication protocols reported for in WP3. The results will lead to
more efficient storage and bandwidth usage for the heavy-edge artifacts and feedback
into the development in WP6.

The Just-Right-Consistency approach with corresponding verification tools, Repliss
and CEC, that has been developed in the context of WP4, is the foundation for the seman-
tics of AntidoteDB and its derivatives. The constraints indicated by our theoretical results
on consistency in edge computing guided us in developing extensions such as support for
strongly consistent transactions. The evaluation of the use cases will be targeted in WP7
and will feedback into the further development of the software artifacts for WP6.

2.3 Summary of Deliverable Revision
This deliverable has been revised to incorporate comments and modifications requested
by the European Commission Reviewers. The main changes made to the deliverable are
as follows:

• We revised the structure of the deliverable. In particular, we distinguish between
core results relating to Lightkone’s reference architecture and exploratory work
beyond the project’s artifacts.
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• We have contextualized the results reported in this deliverable in relation to the
Lightkone Reference Architecture.

• We have extended the state-of-the-art discussion to refer to additional relevant
works, and to clarify the novelty of the work presented here.

• We evaluate the project milestones and give a detailed outline of the planned work
for the last year of the project.

2.4 Outline of this deliverable
Section 2 gave a placement of the work performed in WP6 with respect to the Lightkone

Reference Architecture and described the relation with the other WPs.

Section 3 presents the progress on the tasks relating to D6.2., addressing the challenges
of heavy-edge scenarios. In particular, this subsumes different extensions to Anti-
doteDB that address challenges of developing highly-available, scalable and main-
tainable applications relying on a geo-replicated cloud datastore.

Section 4 provides references to the code repositories and documentation of AntidoteDB,
related artifacts and applications. It further summarizes the improvements and
changes done in the report period.

Section 5 describes the design, architecture, and implementation for the two use case
applications of WP6.

Section 6 summarizes state-of-the-art for the core results of D6.2. and discusses how we
improve on them.

Section 7 discusses additional exploratory research work that has been produced by part-
ners of the Lightkone consortium.

Section 8 reports the scientific publications and dissemination activities that related to
WP6 during the report period.
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3 Progress and Plan
This deliverable reports on our progress and results for heavy-edge computing that we
have achieved between M13 and M18 of the project. Most of the works described here
were already motivated and introduced in D6.1., but have been significantly extended and
advanced.

3.1 Partial replication

(a) EdgeAnt: Partial replication at client-side

As we described in the previous deliverable D6.1, the Swiftcloud approach [48] extends
the data center causal consistency guarantees to the client local storage. The Swiftcloud
system provides guarantees and techniques such as Read-Your-Writes, partial replication,
K-stability, monotonic operations and small metadata design for tracking causality.
Based on the previous work, we implemented EdgeAnt, a client cache storage wish en-
sures the same consistency, convergence and fault-tolerance properties of Swiftcloud,
using Antidote DB as a back-end storage, a rich API model and data/computation place-
ment flexibility.

Design and requirements overview We consider a system model composed of a small
set of powerful and geo-replicated Data Centers running Antidote DB (as described in
D6.1), and a large set of limited resources clients.
Each DC hosts a full replica of data, and DCs are connected in a peer-to-peer manner.
Antidote uses Cure protocol replication and its storage is operation-based which requires
some protocol adaptation at clients partial-replica. DC can fail and recover from its per-
sistent storage.
Clients stores a small and partial replica of the data, called there interest set, thus, an
operation achieves high availability when the requested object is cached, but needs a re-
mote communication when the object is missing in the local cache. Each EdgeAnt client
is connected to a single DC, clients do not communicate directly. A client may discon-
nect, make offline local updates, than reconnect to its original DC or another one.
As in Swiftcloud, EdgeAnt decouples metadata design separating tracking causality,
which is done using vector clocks in the DC side, and unique identification, based on
scalar timestamps assigned in the client side.
Thanks to this design, and K-stability, metadata remains small and size-bounded in the
number of DCs.

Client API EdgeAnt is a simple extension to the edge, where applications can interact
with EdgeAnt the same way they could interact with Antidote, using its Erlang Protocol
Buffer interface. The application first starts the transaction, then read/update one/multiple
objects, and finally commit the transaction.

Transactions protocol When the EdgeAnt client first connect to the DC, it’s assigned
a global unique identifier composed of a scalar id and original DC id, this identifier will
be attached to all transactions to ensure the “Only applied once” property, especially in
the case when the client moves and applies its updates to another DC. Each operation will
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be then assigned a vector clock timestamp with respect to the Cure protocol. EdgeAnt
client first connection also caches its initial state with the object from its first interest set,
as explained in D6.1. The interest set of object keys is dynamically updated by the client,
and is also stored in the DC side which will send back K-stable updates for its object.

Local updates are ordered using a scalar timestamp, the Commit Protocol (from client
to DC) sends clients local commits to its connected DC, in background. In the DC side,
received updates are applied with respect to clients timestamps order, causal dependen-
cies (they can be client internal or external, the DC can report missing dependencies to
the clients) and the aforementioned idempotence property. Then the geo-replication is
done with respect to K-stability and Cure’s stabilization protocol. Finally, the DC an-
swers back to the client with the assigned vector clock, if this answer is not received, the
client raises a DC failure and switches to another DC.

Each connected client has an EdgeAnt Session in the DC side, this process maintains
not only the interest set but also the last known snapshot vector used by the client. Pe-
riodically, the DC will send over this session channel, a causal stream of updates. This
notification update consists of a log of updates to the objects of the interest set, that are
between the last know snapshot vector and the new one. This log can be empty, as we
want also to notify the client when the snapshot vector changes due to external depen-
dencies, and avoid causal gaps.

Moving computation Client computation resources can be poor and limited, although
being resource-friendly and metadata lightweight, in EdgeAnt, some heavy operation can
be done faster using the DC power. We are currently exploring a hybrid model where we
can move computation from the client to the server in the heavy jobs case. This raises
some interesting challenges like preserving the causal state of the client, handling updates
and scheduling operations.

(b) WebCure: Partial replication for web applications

Despite improvements in connectivity for mobile devices by service providers, such de-
vices are still subject to periods of disconnection. At the same time, users have higher
expectations regarding the availability of applications: They want to interact with an app
even when the device is (temporarily) offline. To provide an offline mode, apps need to
cache the required data on the client machine. In addition, updates need to be recorded
and forwarded to the server once a connection is re-established. This idea has led to many
ad-hoc solutions that often don’t provide well-defined consistency guarantees.

Web application running on client side are a typical scenario in which client-side
replication is desirable. In current work, we are therefore developing a framework, named
WebCure, for client-side partial replication in web applications. The framework uses
Antidote as a cloud data store and supports client-side replication on selected data objects.
It consists of three parts:

• A client-side data store is required to maintain the (partial) replica of the data that
is relevant for the user. It maintains both the data that has been received from the
cloud storage server and the updates that have been executed by the client, but have
not been delivered to the cloud store, yet.
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• A service worker acts as a proxy on client-side. It intercepts all calls to the cloud
store. While the client is offline, it forwards the requests to the client-side data
store.

• A cloud storage server that maintains data shared between different clients. For
our framework, we chose Antidote as the cloud storage server. CRDTs are a very
appropriate choice as data model since they provide a well-defined semantics for
concurrent updates. Updates that are executed while a client is offline are con-
current with all other updates happening between the last retrieval from the cloud
storage and the next connection and synchronization of the client.

As discussed in D6.1., we have shown with the Swiftcloud system [48] how to pro-
vide a partial replication scheme that extends the causal consistency of the cloud storage
to client-side. Updates have to be recorded on the client to be forwarded to the server
in case of connectivity. When reading data, we need to apply these operations on the
last version received from the server to provide session guarantees such as Read-Your-
Write and monotonic reads/writes. On the other hand, maintaining just a most recent
version of a CRDT at the client is problematic. Differences in the cloud storage part
of Swiftcloud and Antidote require adaptations of the protocols. Antidote is using an
operation-based technique that is more efficient, but requires causality when deploying
messages. In contrast, Swiftcloud employed a hybrid CRDT representation that enabled
both operation-based and state-based convergence. We are currently adapting the Swift-
cloud protocols and extend the Antidote API to support also the forwarding of meta-data
to the client that is required for the CRDT operations.

In contrast to EdgeAnt, which is a feasibility study for edge-replication on Antidote,
WebCure is motivated by the requirements and technology of web applications. We-
bCure’s focus is on support for offline computation. Design decisions and heuristics for
maintaining the offline cache are derived from this use case.

3.2 Challenges in Consistency

(a) Access control for weakly-consistent data stores

As we described in the previous deliverable D6.1., protecting sensitive data in applica-
tions on weakly consistent data stores is a challenge if the access control policies can
change dynamically. The programmer might have an intuitive understanding of how ac-
cess control should work:

After revoking a right, all operation requiring this right cannot be executed
until the right is explicitly granted again.

In setting where operations on data and policies happen sequentially, the semantics are
based on the order in which operations are executed. However, in a system where updates
on data and policies can happen concurrently, it is not straightforward how to resolve
conflicting accesses. As we have shown in prior work [46], replicated data types allow to
encode conflict solving strategies into the data type semantics itself. We have developed a
Policy CRDT that resolves conflicting update operations on a policy in a safe, restricting
way. Further, we have shown how causal consistency and transactional data access allows
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to implement an access control semantics that reflects the programmer’s intuition about
access control without requiring serialization of data and policy access.

Our work on access control has meanwhile progressed both in theoretical and prac-
tical aspects. In the previous report, we considered a simplistic access control model
where each operation was associated with an access control policy. Such a policy states
whether an (abstract) subject is allowed to execute a specific operation on some object. In
practice, more advanced authorization models have been established. In attribute-based
access control, attributes of the subject, the objects, and the operations are taken into
account when evaluating the access control policy. This approach allows to implement
a wide range of access control policies, including also approaches such as role-based
access control (by adding a role attribute to a subject).

To validate our model of attribute-based access control on weakly consistent data
stores, we have derived a machine-checked proof of the correctness using Isabelle/HOL.
Further, we implemented a prototype of this attribute-based AC framework based on
Antidote’s Java client. In preliminary evaluations, we ran micro-benchmarks on our local
server. Our prototype shows high scalability in work loads with a moderate overhead of
approximately 30% for the evaluation of the access control policies. In a next step, we
are planning to evaluate our system on AWS. For the corresponding evaluation plan, we
refer to D7.1.

(b) Antidote Query Language

We are currently working on Antidote Query language (AQL) to extend its support for
queries over large collections of data. In that effort, we have added support for indexes,
range queries and server-side operations. To implement these features, we came across a
number of challenges that we detail in the following. We start this section by providing
an overview of the goals of AQL.

AQL overview AQL is a SQL interface for AntidoteDB. As other SQL interfaces for
NoSQL databases, the main goal of AQL is to allow programmers to access the database
through the familiar SQL interface. We currently support only a subset of SQL, with one
of the major limitations being the fact that joins are currently not supported.

What is unique in AntidoteDB, when compared to SQL interfaces for weakly con-
sistent databases, is its support for SQL invariants and a concurrency-aware schema def-
inition. These features were discussed in D6.1. During this reporting period, we have
been improving the implementation of these features by minimizing the meta-data ma-
nipulated during operation execution.

Building indexes on weakly consistent data In classical database systems, tables are
normally stored in order of their primary key to allow fast look-up and scan operations
based on that key. When an application needs frequent data access based on values that
are not keys, it is common to create secondary indexes to speed-up those operations.
A secondary index for a table T = (id,col1, . . . ,colN) consists of a mapping structure
{valuei → {idi, . . . , idn}}, where valuei ∈ T.colx, for all distinct values of T.colx, and
{idi, . . . , idn}= {r.id j | ∃r ∈ T,r.colx = valuei}. With this structure it is possible to search
for rows based on the indexed column colx, without actually traversing the table content.
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AntidoteDB uses a key-value store as the backend store. Currently, each key points to
a CRDT Map that stores the content of a table. Each key of the map represents a primary
key of the table and points to another map that stores the remaining column values. Each
column value is itself a CRDT.

As in traditional databases, this design poses limitations for executing queries based
on non-key values, since it is necessary to access the content of each row to check if it
matches the query filter. We have added support for secondary indexes in AntidoteDB to
solve that issue.

To maintain the index, we use a mapping structure as described before, and for each
operation on the indexed table, we update the index as follows: on inserts, we add the new
row’s primary key to the set of identifiers of the corresponding indexed column value; for
removes, we remove the identifier; and for updates, we remove the identifier from the old
entry and add the identifier to the new entry. However, this simple strategy is unable to
maintain the integrity of the indexed table under concurrent executions.

Consider that two concurrent operations add a new row (idi,v1) and (idi,v2) to table
T = (id,cidx), with an index idx on column cidx. To update the index, each operation adds
new entry v1 → {idi} and v2 → {idi} on index idx. Since the two operations on table
T conflict (because they use the same identifier), a conflict resolution for column cidx is
applied, eliminating v1 or v2. However, since each operation created a distinct entry on
the index, both values are preserved, leaving the index inconsistent.

To solve this issue, we store in the index the set of primary keys and the corresponding
indexed value’s CRDT, Indirection = (idi,CRDT (cidxi)). With this auxiliary data, we
are able to reproduce the conflict resolution rule on the index and discard the element
that was lost during the conflict resolution. We explain the scenario with an example.
When the first operation in the previous example is applied on the index, a new entry
(v1 → idi) is created and the pair (idi,CRDT (cidxi)) is added to Indirection. When the
second operation is applied, that primary key has been already added to the index, and
thus a conflict arises when adding the pair (v2 → idi}) to Indirection. We reapply the
operation on the CRDT associated to idi to get the latest value for cidxi . Now, we remove
all occurrences of the primary key in the index and create (or update) the entry of the
latest value cidxi . This ensures that the index is consistent at all times.

With secondary indexes, we are able to execute WHERE clauses more efficiently when
the filter condition contains columns that are non primary keys and an index is available.
We also added support for inequality operators, such as ≤, <, >, and ≥. Range queries
are supported by traversing the indexes in-order (primary/secondary). It is not recom-
mended to execute range queries over non-indexed columns.

Server-side operations To execute queries, AQL needs to fetch the data from Antidote
before applying the query filters. This poses an overhead on the network for transferring
large amounts of data that might end up being discarded by the AQL query processor. For
instance, to execute a query statement like SELECT * FROM T WHERE T.id = x,
it would be necessary to fetch the whole table. To avoid transferring unnecessary data, we
are extending Antidote with server-side queries. Server-side queries allow simple query
operations over individual CRDT objects which allows, for instance, to filter table rows
before passing the data to AQL.

This mechanism would allow a query optimizer to request partial views of a CRDT
to reduce the amount of data that has to be transferred to execute a query. For example,
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consider a query that joins two tables, but discards all values that are older than a certain
threshold. With server-side operations it is possible to filter the rows that do not meet the
threshold before sending the response to AQL.

To support this feature it is necessary to extend the interface of CRDT objects to
return a partial view of their state and extend the Antidote interface to support direct
queries on objects. This feature is currently being developed.

REST API We have added support for issuing AQL statements through a REST inter-
face. The interface exports a single endpoint, with the statement being submitted in the
body of the request. The results of executing the statement is returned in the body of the
reply. Currently this REST API is not integrated with the main AntidoteDB API, but we
plan to integrate it when AQL is integrated in the master.

(c) Strong Consistency for Antidote

When designing a distributed application, the semantics for accessing the data maintained
by the application is defined by the consistency model of the respective data store. The
choice of consistency model follows a certain trade-off: synchronous models, such as
linearizability or serializability, impose a global order on operations and thus a simplified
means of reasoning about application semantics; asynchronous ones, such as eventual
consistency or causal consistency, offer low latency responses and tolerate partition, but
are more difficult to understand. With the Just-Right Consistency (JRC) approach that
we introduced in D4.1., we aim to minimize the amount of synchronization required to
ensure the applications invariants. JRC builds upon common invariant-preserving pro-
gramming patterns. The patterns “ordered updates” and “atomic grouping” are com-
patible with concurrent and asynchronous updates. The “precondition check”, however,
requires synchronization only in certain cases: Under network partitions, the state might
change at a remote replica, thus falsifying the local precondition check. If an analysis
identifies transactions, which could invalidate application invariants, we require synchro-
nization mechanisms from the datastore to preserve these invariants. This means that
the datastore should provide a interface for highly available and partition tolerant (AP)
transactions and one for strongly consistent and partition tolerant (CP) transactions.

As described in D4.1, Antidote provides AP transactions on CRDT data objects with
transactional causal consistency as consistency model. In addition, bounded counter
CRDTs can be used to maintain invariants on counters that are guaranteed to not cross
specified values. To fully support the JRC approach, we are currently developing an
extension to the Antidote API that provides distributed locks. Transactions can take as
parameters a set of locks that are required for executing the transaction safely. These CP
transactions are guaranteed to execute causally consistent with all other transactions and
linearizably with respect to other CP transactions that synchronize on the same locks. It
thus follows the RedBlue consistency model [30] distinguishing between fast eventually
consistent operations (blue) and (potentially more costly) strongly consistent operations
(red). In a first prototype, we have implemented simple locks that are transferred upon re-
quest between Antidote clusters. The on-going implementation can be found in a branch
of Antidote’s Github repository 1. We are planning to investigate and compare further
locking strategies such as multi-level locks to provide a more fine-grained approach.

1https://github.com/SyncFree/antidote/tree/strong consistency
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3.3 Plan for final year
As anticipated in the description of work, the design and implementation of the indus-
trial use cases by UPC and Scality have provided valuable feedback for the heavy-edge
artifacts of the Lightkone Reference Architecture.

In the final year, the agenda for WP6 comprises the following tasks:

• Scality will finish the ongoing implementation of the Proteus framework and make
it accessible as open-source artifact.

• To support UPC’s evaluation of the monitoring application using AntidoteDB on
several hardware platforms as described in D7.2., NOVA, TUKL and SU will pro-
vide variants of AntidoteDB targeting resource-constraint environments and de-
ployment support for different network topologies. To this end, SU will also final-
ize the development of EdgeAnt and provide a packaged, deployable version of the
corresponding software.

• TUKL and SU will provide an improved implementation of AntidoteDB’s backend
that allows for a more efficient handling of persistent state.

• INESC TEC will implement a Tagged Causal Broadcast middleware using a novel
algorithm. This middleware will be evaluated as an alternative for inter-DC com-
munication in AntidoteDB.

We further plan to incorporate feedback from the implementation and evaluation of
the use cases as described in D7.2. as needed for a successful completion of the indus-
trial use cases. This will subsume on-going work for the Antidote Query Language and
maintenance of AntidoteDB’s codebase.
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4 Software Deliverables
The following software artifacts from this report are publicly available:

• WebCure‡

• EdgeAnt‡

• Access Control (ACGreGate)‡

• Antidote Query Language (AQL): https://github.com/JPDSousa/AQL

• REST API for Antidote : https://github.com/LightKone/antidote-rest-server

• Antidote Go client : https://github.com/AntidoteDB/antidote-go-client

• Antidote with strong consistency : https://github.com/SyncFree/antidote/tree/
strongconsistency

• UPC Monitoring App: https://lightkone.guifi.net/lightkone/uc-monitor-go-test

• Calendar App: https://github.com/AntidoteDB/calender-app

‡These softwares are potential valorization targets. Access to the code can be obtained
upon request.

In the following, we summarize the work on the software deliverables for WP6 in
M12-M18.

(a) Antidote Playground

The semantics of concurrent access to shared data can be challenging to understand for
programmers. In contrast to eventually consistent replicated key-value stores with few
guarantees, CRDTs have a well-defined semantics that provides convergence of con-
current updates. Nevertheless, it can be intimidating for programmers with little prior
exposure to CRDT theory to understand their semantics. Often, it is also unclear how
to derive a data model that benefits from a data-type driven approach to replication and
conflict resolution. We therefore implemented a web application to interactively explore
their semantics. The Antidote playground allows users to simulate concurrent operations
on shared data by explicitly introducing and healing network partitions. In its current
form, it features an interactive shell where objects under keys can be read and updated
using a dedicated language for the interaction. Further, we developed a shared calendar
with safe conflict detection and resolution (Figure 4.1). By performing concurrent modi-
fications on the same calendar entry, the user see the usage of AW-Sets and Multi-Value
Registers in an application.

Technical setup The Antidote Playground is deployed on a local cluster of Docker con-
tainers, a machine containing 16cores Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz,
64GB memory and 512Go SSD hard drive. Currently, the cluster is only located in Paris;
we plan to geo-replicate it to two more locations (Lisbon and Kaiserslautern) in the fu-
ture. On the software side, the cluster is running Ubuntu 16.04, Linux 4.4.0, Docker 17.3
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Figure 4.1: A shared calendar using Antidote as a backend. Concurrent updates on Multi-
value Registers such as the description of an entry require user intervention; concurrent
updates on other data types are handled with according to the respective CRDT seman-
tics.

and Erlang 19.3. Each instance of the Antidote Playground is composed of 3 Docker
instances running the last stable Antidote docker image. The Antidote instances are
inter-connected via local network (on ports 8087/8088/8089) with a simulated latency
(fixed to 1ms by default). The Antidote Playground API offers a Java interface to man-
age network partitions (GET partition status, ADD partition and DELETE partition by
id). The Antidote Playground web application is also contained in a Docker instance that
is HTTP-opened to the world through 3000 port.
Currently, the Antidote Web Shell application is publicly running on the cluster and is ac-
cessible from http://antidote.lip6.fr:3000/. This application offers a number of simple
Shell commands to manipulate CRDT AW sets, counters, and simulate network parti-
tions.

The Antidote playground will further be made available on the Antidote webpage2.

(b) Improvements to CRDT library

The CRDT library was improved to be easier to use by third parties. In particular, we im-
proved the documentation and removed experimental data types from the master release.
The removed experimental CRDTs are:

• The integer, because we would prefer a semantics, where an assignment of a value
is not changed by concurrent increments. However, an efficient design for this
semantics most likely requires support for generating actor identifiers outside of
the library (e.g. in Antidote), for which we have yet to find an elegant solution.

• The replicated growable array (RGA), because it contained bugs and inefficiencies.
We are currently implementing better CRDTs for storing lists.

• The add-wins map was removed, because it does not implement garbage collection
of meta-data. The alternative recursive-resets map is therefore more efficient. Cur-
rently the recursive-reset map has some deficiencies: not all CRDTs can be used
as values in the map and the map cannot distinguish entries with an empty value
from missing entries. We are planning to improve the recursive-resets map to have
the same semantics as the old add-wins map.

2http://antidotedb.eu
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(c) Specification of Antidote back-end interface

Antidote stores its operations sequentially in a durable log. It allows asynchronous, se-
quential writes of multi-objects transactions and atomic writes which is efficient for oper-
ation based CRDTs. However, this creates the following problems; with time the journal
grows without bound and recovery from crash gets slower as it implies reading the entire
log in order to restore its in-memory state.

We are currently redesigning the durable store. We keep the log, but combine it with
durable storage of checkpointed object versions. This way we keep the advantages of
the log, but we can truncate information that is either obsolete or redundant with the
Checkpoint Store. The overarching objective of the specification is to guarantee that
every object, and every live version of an object is durable. The fact that an object
or object version is live is a property defined by the application. Furthermore we gain
efficiency by storing small updates with the journal and large states with the Checkpoint
Store. Strictly speaking, only the journal is necessary; the Checkpoint Store allows us to
truncate the journal and store materialized versions of an object, making it more efficient
for edge devices. Therefore the back-end store design combines two parts:

• Journal: A sequentially written log of update operations. Each Antidote partition
server has its own private journal.

• Checkpoint Store: A KV store of materialized object versions. The Checkpoint
Store may be private or shared across Antidote shard servers.

Journal: The journal is a sequence of opaque records. It is write-once, read-many
and is optimized for sequential access. Each record is identified by a RecordId, which is
a unique record identifier, a monotonically increasing number assigned by the journal.

The journal has two special RecordIDs; the highWatermark makes the upper bound
of records known to be durable, and lowWatermark the lower bound.

Checkpoint Store This is where Antidote store the checkpoints of object states. Our
design stores write-once versioned objects. This implies that the Checkpoint Store sup-
ports creating new versions atomically, and listing an object’s versions. Every object
is identified by its key, and an object version is identified by a pair (Key, Timestamp)
where Timestamp is a vector. We distinguish data and metadata by a secondary identifier
SubID. The Checkpoint Store is a map of (Key, SubID, Timestamp) to blobs. The store
can use SubID to optimize object data for large writes, versus metadata for small writes.

In order to rebuild a transactionally causally consistent snapshot, either because it
is not cached in memory or on recovery after a crash, it requires to list the versions of
a key. It must be the case that every live version can be reconstructed either from the
Checkpoint Store, or from the journal and Checkpoint Store. Our further work will be to
specify the corresponding invariants of the back-end store, adapt the materializer to this
new specification, proving correctness and testing and deployment with an challenging
application, a petabyte-scale edge file system.

(d) DC management API

An Antidote data center (DC) is a cluster of multiple Antidote nodes. An Antidote de-
ployment can extends to several DCs where each DC maintains a full replica of the data
stored. After starting several Antidote nodes, the user has to instruct them to form a DC
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and connect them to start data replication among the DCs. Previously, this DC connection
operation was only possible by calling Erlang functions through the Erlang VM’s RMI in-
terface. Meanwhile, we provide a DC management API exposed over the protocol buffer
interface. With the new API, users can create DCs by specifying the Antidote nodes that
belongs to a DC and connect multiple DCs for replication using the same language client
libraries that we provide for data access in Antidote. This has significantly simplified the
task of setting up Antidote clusters and dynamically maintaining their state.

(e) Test system

Testing distributed systems is notoriously difficult, though many problematic situations
can be prevented by simple unit tests [45]. To facilitate the testing of Antidote and its new
extensions, we have refactored Antidote’s test suites and provide now documentation and
guidelines for developers to write tests.

Antidote features both unit tests for single modules via Erlang’s eunit and system
tests via the Common Test framework that help to test components and the entire system.
The goal of the test suites is to define deterministic execution sequences that also include
failure cases. To this end, we provide test libraries that allows to disconnect, kill, and
restart nodes.

With the refactoring, we managed to reduce the execution time of the test suites from
approximately 26 min to 18 min. The test coverage is now at 70% for the system tests.
We hope to improve it further in the next time.

(f) Go client

The Go programming language developed by Google is “an open source programming
language that makes it easy to build simple, reliable, and efficient software” 3. Antidote
offers now also a client library for Go which enables developers to use the Antidote data
store from Go programs. Because Go is designed to be a systems programming language,
we hope to open opportunities to use Antidote from performance constrained software
such as software running in edge devices.

(g) REST API

Early in the development stages of the UPC Use Case (UC) it was noticed that having
a language-independent interface to AntidoteDB would help in the process of bootstrap-
ping the application code. This would apply not only to that particular case, but would
also ease the adoption of AntidoteDB in other scenarios. Given the fact that most mod-
ern languages support interaction via HTTP (e.g. making GET calls), an HTTP/HTTPS
Representational State Transfer (REST) Application Programming Interface (API) was
developed, providing an additional interface for applications to interact with AntidoteDB.

At its current stage, the REST API provides the following operations for a subset of
the Conflict-free Replicated Data Types (CRDTs) available in AntidoteDB:

• Counter

– GET /counter/read/:bucket/:key

3https://golang.org/
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– GET/PUT /counter/increment/:bucket/:key/:amount?

• Integer

– GET /integer/read/:bucket/:key

– GET/PUT /integer/increment/:bucket/:key/:amount?

– GET/PUT /integer/set/:bucket/:key/:value

• Set

– GET /set/read/:bucket/:key

– GET/PUT/POST /set/add/:bucket/:key/:elem

– GET/DELETE /set/remove/:bucket/:key/:elem

• LWW Register

– GET /register/read/:bucket/:key

– GET/PUT /register/set/:bucket/:key/:value

• MV Register

– GET /mvregister/read/:bucket/:key

– GET/PUT /mvregister/set/:bucket/:key/:value

The API was implemented as a Node.js 4 server application, using the CoffeeScript 5

framework. Its source code is available at LightKone’s GitHub public repository 6 and
its also packaged and ready for usage at npm’s repository 7.

The REST API server can be installed with npm:
$ npm install -g antidote-rest-server

By default, the REST API is run as a standalone server listening at localhost’s TCP
port 3000 with the following command:
$ antidote-rest-server

Additional configuration options allow to indicate the location (address and port) of
the AntidoteDB host to which the REST API provides the interface, the port where the
REST server listens for connections, etc.

A quick start guide for the REST API is available at the repository wiki 8.

4Node.js - https://nodejs.org/es/
5CoffeeScript - https://coffeescript.org/
6AntidoteDB REST API server source code - https://github.com/LightKone/antidote-rest-server
7AntidoteDB REST API server package - https://www.npmjs.com/package/antidote-rest-server
8AntidoteDB REST API QuickStart - https://github.com/LightKone/antidote-rest-server/wiki/

QuickStart

LightKone D6.2(v2.0), January 15, 2019, Page 17

https://nodejs.org/es/
https://coffeescript.org/
https://github.com/LightKone/antidote-rest-server
https://www.npmjs.com/package/antidote-rest-server
https://github.com/LightKone/antidote-rest-server/wiki/QuickStart
https://github.com/LightKone/antidote-rest-server/wiki/QuickStart


CONTENTS

5 Industrial use cases

5.1 Monitoring Guifi.net community network

The distributed components of the Guifi.net monitoring application that performs the
monitoring servers ⇔ network devices mapping use AntidoteDB to store data and, in-
directly, as a mechanism for coordination between the different servers. For a detailed
description of the use case, we refer to deliverable D2.1.

In order to easily interact with AntidoteDB, the need for an interface that was pro-
gramming language-independent arose at the early stages of the monitoring application
development. This was also important in the context of Guifi.net, where contributors
to the codebase may not be experts on AntidoteDB’s implementation language (i.e., Er-
lang). For this reason, we developed the Hypertext Transfer Protocol (HTTP) REST API
described in Section 4(g): to enable instances of the monitoring application to conve-
niently read/write data from/to AntidoteDB, but also to foster the bootstrapping of other
applications in different scenarios.

A proof-of-concept monitoring application has been implemented, in the Go pro-
grammig language 9, and is available in a public repository 10. It is organized in three
main modules that perform different tasks, which are detailed below.

monitor-fetch: network description fetching and feeding to the shared database
A hierarchical description of the whole Guifi.net network is available in the Extensi-
ble Markup Language (XML)-formatted file cnml.xml, which can be downloaded from
the Guifi.net website. Besides this global cnml.xml file, we use also smaller files which
describe smaller parts of the Guifi.net network (bellvitge.xml -a small mesh subnetwork-
, upc.xml -a bigger mesh subnetwork- and barcelona.cnml -which includes the previous
one-. Being the primary data source for this module a Community Network Markup Lan-
guage (CNML) file, the monitor-fetch program parses the specified CNML file to filter
only the required information and push it to AntidoteDB. There is a single monitor-fetch
instance, and its writes and updates to AntidoteDB are considered to be authoritative.

Once parsed from the CNML file and dumped to AntidoteDB, the data is structured
as follows:

guifi (bucket): The guifi bucket contains the lists of monitors and network devices to
be monitored.

guifi (bucket) ⇒ devices (set): The devices set in the guifi bucket is an array of
strings, each string containing the numeric ID of a Guifi.net device. For example:

$ curl localhost:3000/set/read/guifi/devices
["2110","26932","38720","40605","40962","41175","42331","42626",
"42627","42628","46654","46656","47103","48030","51580","57728",
"59001","60415","64962","64963","64965","64966","65291","65720",
"72843","73952","79715","81297","82096","82097","82098","82099",
"82103","82104","82105","82111","83865","85877","87503","90228",
"92032","92802","92803","92804","94210""94965"]

9The Go Programming Language - https://golang.org/
10https://lightkone.guifi.net/lightkone/uc-monitor-go-test/tree/antidote-rest
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guifi (bucket) ⇒ monitors (set): The monitor set in the guifi bucket is an array of
strings, each string containing the ID of a Guifi.net monitor. We distinguish the current
monitors registered at the Guifi.net website from the monitoring servers used in our pro-
totype by adding the prefix a to their ID. When a monitoring server starts, each of the
monitoring servers registers with the system by adding its ID to this set. For example:
$ curl localhost:3000/set/read/guifi/monitors
["a45632","a87363", "21435", "41229"]

guifi (bucket)⇒ checksum (LWW1 register): The checksum LWW register in the
guifi bucket is a string containing the SHA256 checksum of the last CNML data fetched
from the Guifi.net website and pushed to the database. For example:
$ curl localhost:3000/register/read/guifi/checksum
35aaa826b841ed412897691bb1f50278d742ef9a76da9750a8ae509d3b01f8ee

device-i (bucket): The device-i bucket, where i is the numeric ID of a device in the
guifi⇒ devices set, contains the information about a specific Guifi.net device:

device-i (bucket)⇒ ipv4s (set): The ipv4s set in the device-i bucket is an array of
strings, each string containing an IPv4 address of the device. For example:
$ curl localhost:3000/set/read/device-26932/ipv4s
["10.139.37.226","172.25.40.188","172.25.40.189"]

device-i (bucket) ⇒ monitors (set): The monitors set in the device-i bucket is an
array of strings, each string containing the ID of a monitor the device is assigned to (i.e.
the ID of a monitor that is in charge of monitoring the device). For example:
$ curl localhost:3000/set/read/device-26932/monitors
["a45632","a47363", "21435"]

device-i (bucket)⇒ graphserver (LWW register): The graphserver LWW register
in the device-i bucket is a string containing the ID of a monitor the device is assigned to
in the Guifi.net website (i.e., not automatically assigned by the monitoring application,
but done manually on the Guifi.net website, and included in the CNML). For example:
$ curl localhost:3000/register/read/device-26932/graphserver
71808

monitor-assign: network devices assignment among the different monitoring servers
The monitor-assign modules that run at each monitoring server perform the distributed
assignment of network nodes among the different servers. To do this, it relies on the
network information already written to AntidoteDB by the monitor-fetch module. The
assignments decided locally are written back to Antidote to the device-i (bucket) / mon-
itor set. In our current WiP implementation we apply a random network node to server
placement as assignment policy.

3) Monitor the network nodes: This component under WiP aims to support the nodes
to monitoring server assignment by other policies, which as effect may increase the over-
all reliability or fulfill specific criteria of the monitoring system.

The next steps in the prototype development will interact with the results from the
evaluation conducted in WP7 and the obtained feedback will consolidate the next version
of the application design.
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5.2 Building a cross-cloud index for Scality’s federated metadata
search

Scality’s open source multi-cloud framework, Zenko 11, enables applications to transpar-
ently store and access data on multiple public cloud storage systems, including Microsoft
Azure Blob Storage, Amazon S3 and Google Cloud, as well as private on-premise storage
systems, using a single storage interface (an Amazon S3 compatible API). Zenko sup-
ports cross-cloud metadata search, enabling applications to retrieve data by performing
queries on metadata attributes across multiple cloud namespaces.

Scality’s use case aims at introducing a geo-distributed metadata search service as a
replacement to the current implementation which supports cross-cloud metadata search
by gathering and storing metadata attributes on a database placed on a single location.
The new design aims at improving the search system’s state and computation placement
flexibility. We describe this use case in more detail in deliverable D2.2.

Proteus: A framework for making trade-offs in distributed querying Implementing
distributed querying systems, such as Zenko’s metadata search, is challenging as the
problem has a large design space with multiple dimensions. Querying systems need
to optimize different metrics, such as search latency, write latency, and search result
freshness, which are often in tension. Therefore, no single design can be appropriate for
all uses; design decisions depend on data distribution and replication schemes, as well as
the requirements of each particular application.

Proteus is a geo-distributed framework for analytics computations on federated data
stores. It maintains materialized views and performs stateful data-flow computations.
Proteus can support any combination of sharding, partial or full replication, and federa-
tion of data stores. In the context of the project we will use an instantiation of Proteus in
which materialized views are realized as secondary indexes and search result caches, and
the framework can perform distributed query processing. Therefore, Proteus will be used
as a distributed query processing framework for transparently extending geo-distributed
data stores with querying capabilities. An earlier version of this work [43] has been
introduced in D6.1.

Proteus is by design modular and flexible. It enables administrators to place data
and computations according to SLA considerations. More specifically, querying system
implemented using Proteus can make varying design choices about:

• Search mechanism: Queries can be processed either by scanning the dataset and
filtering objects that match a given query, or by maintaining secondary indexes.
These approaches create a trade-off between search latency and the storage and
maintenance overhead of maintaining indexes. Additionally, search result caching
can be used to speed up query processing.

• Data and computation placement: The system’s state (indexes and caches) can
be flexibly placed across a geo-distributed system architecture. The state placement
strategy affects communication patterns for index maintenance and query process-
ing. Fro example a secondary index can be partitioned in partial indexes, and these

11https://www.zenko.io/
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indexes can be distributed across multiple locations or placed closer to the clients
at the edge of the system.

• Consistency model: Secondary indexes can be either eventually-, causally- or
strongly-consistent, according to the capabilities of the underlying data store.

By allowing flexibility across these dimensions Proteus can express multiple points in
the design space of distributed query processing. As a result, Proteus can be tailored to
address multiple different application characteristics and requirements.

Technically, Proteus runs a bidirectional data-flow computation, and maintains inter-
nal state that is used for processing queries. A write to the data store streams upwards
through the data-flow graph, and incrementally updates indexing structures. Conversely,
a query streams downwards through the data-flow graph, and is incrementally split into
sub-queries that are processed, either using Proteus’ internal state, or by querying the
data store. Queries also update Proteus’ internal state, for instance query results can be
cached. The data-flow graph of Proteus is modular, and enables flexible placement of
state or computation, across a geo-distributed system architecture.

System Architecture Proteus architecture is composed of software components
called Query Processing Units (QPUs). QPUs act as microservices that perform primitive
query processing tasks, such as indexing, scanning and caching.

Below we present the different types of QPUs in the system, their functionality and
their interface.

Data Store QPU: The data store QPU works as a wrapper that exposes a common
interface to the rest of the querying system independent of the underlying storage system.

An object stored in the data store is composed by a blob of data, a set of secondary
attributes represented as a map (MDKey, MDValue), where MDKey and MDValue are
binary values.

An object is identified by:

• Key: Unique object identifier

• Timestamp: Vector identifying the version of an object

The data store QPU exposes the following API:

• listOb ject(Timestamp ts1,Timestamp ts2) : StreamO f Ob jects
Creates a stream of all the object versions with ts : ts1 ≤ ts < ts2. For each object,
the result contains its key and metadata attributes.

• getOperations(Timestamp ts) : StreamO f Operations
Creates a stream of the operations with ts : ts1≤ ts. This stream remains active until
explicitly closed by either the sending or receiving end, and each new operation
performed in the data store is sent through the stream.

Scan, Index, Cache and Dispatch QPU The remaining QPU types expose a common
interface. This interface is used by clients for issuing search requests to the querying
system as well as for communication between QPUs.

These QPU types expose the following API:
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• f ind(Query q,Timestamp ts1,Timestamp ts2) : StreamO f Results

where a Query is a map of (MDKey, MDValue, MDValue), which represents a list
of secondary attributes and attribute value ranges.

Creates a stream of all the object versions that match the given predicate with
ts : ts1 ≤ ts < ts2.

Each type of QPU has a specialized implementation of this interface:

• Index QPUs maintain partial secondary indexes and process queries by performing
index lookups. The index QPUs make use the data store QPU getOperations API
in order to receive updates performed to the data store and build secondary indexes.

• Scan QPUs use the data store QPU listOb ject API in order to receive a stream of
object stored in the data store and filter the objects that match a given query.

• Cache QPUs maintain a cache recent query results and respond to queries using
their cache or forward queries to other QPUs using their f ind interface.

• Dispatch QPUs process queries by decomposing them to sub-queries and forward-
ing them to other QPUs for processing, using their f ind interface.

Proteus is used by deploying QPUs and interconnecting them in a network by con-
figuring the communication between them. Different QPU network configuration can
make different design choices about (1) the types of QPUs used, (2) their placement in
the system, and (3) the communication patterns among QPUs and between QPUs and the
underlying storage system. These design choices express different points in the design
space of the problem of distributed query processing.

The query processing protocol works in a decentralized fashion. Given a query, the
receiving QPU first determines if it can process it locally (by performing an index/cache
lookup or a data store scan). Otherwise, the QPU decomposes the given query to sub-
queries, forwards them to (some of) its neighbors, and then combines the received re-
sponses and responds. Each of the neighbor QPUs that receives a sub-query recursively
runs the same protocol.

QPUs in Proteus use Antidote as a backend database for storing indexes as CRDTs.
We are also currently studying designs for using Antidote to provide causality and atom-
icity guarantees in index maintenance.

Implementing multi-cloud metadata Search using Proteus We plan to implement
a geo-distributed metadata search service in Zenko using the Proteus framework. The
design consists of index QPUs organized as a hierarchical network that implements a
geo-distributed weakly consistent index. The index is partitioned, and index partitions
are distributed across different locations.

A geo-distributed querying system implemented using Proteus is depicted in Figure
5.1. A data store QPU is deployed locally at each backend cloud storage system and
is responsible for propagating local updates to an index QPU that is also deployed on
the same location for achieving low latency index maintenance. This requires that the
clouds provide an event notification mechanism of some form, which the data store QPU
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Figure 5.1: Zenko Modular Metadata Search Architecture .

can use to get notified for write operations issued directly to the storage systems. Writes
performed through Zenko are eventually propagated to the backend storage systems and
indexed through the same mechanism. Alternatively, an index QPU can be deployed
along with Zenko and be responsible for indexing write operations performed directly
through Zenko. Note that each index QPU shown in Figure 5.1 represents a sub-network
of index QPUs implementing a distributed index. A dispatch QPU is deployed along with
Zenko; when a search performed (through Zenko), the dispatch QPU forwards it to all
index QPUs and then merges the retrieved results.

A querying system can be implemented using Proteus by deploying QPUs as Docker
containers and providing each QPU with a simple configuration describing its behav-
ior, its connections to neighboring QPU within the network, and its connection with the
underlying storage system. Proteus then handles the communication among QPUs for
performing query processing.
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6 State of the art
In this section, we give a comprehensive overview on state-of-the-art for D6.2. In partic-
ular, this covers partial replication in highly-available systems, including several frame-
works for web and mobile application development, and approaches for multi-cloud
query federation.

Partial replication Data placement and replication factors are a critical aspect when
building highly-available systems extending to edge devices. In contrast to caching sys-
tems, partial replication provides means for asynchronous updates on the edge device.

Achieving low latency for web-based applications is an on-going challenge for many
web applications [1, 26, 28]. For example, on amazon.com, a delay of 100ms costs in
average 1% of sales [26]. In order to deliver fast response and offline support, a number
of web applications started caching data on the edge. Facebook designed News Feed [2]
to support offline access; Google Docs and Google Maps can also be used offline via
Chrome browser extension [3].

Many prior work efforts have studied data management in settings where clients are
intermittently connected to servers or to peers. Bayou [42] pushed data replicas to the
edge in the context of mobile environments (Terry [41] presents an excellent synthesis
on the topic), then Cimbiosys [36] extended the decentralized synchronization model
to Internet Services, in addition to Rover [23] and Coda [25], those systems supports
disconnected operations but rely on a weak consistency model.

Recently, Parse [14] and Cloud Types [15] are programming models for shared cloud
data, they allow local data copies to be stored on the edge client and later be synced with
the cloud, but provides only an eventual consistency model.

In prior work, we have explored protocols for partial replication on clients extending
a geo-replicated datastore. Swiftcloud [47] allows programmers to dynamically specify
a set of objects that is replicated on clients residing in points-of-presence. It allows an
offline-first approach with low latency by building on CRDTs and transactional causal
consistency. Swiftcloud targets the same high availability techniques as PRACTI [12]
and Depot [33], but the later two uses a fat metadata approach (version vectors sized as
the number of clients) and they support only LWW registers (but their rich metadata de-
sign could support CRDTs too). Swiftcloud further guarantees that updates are neither
duplicated nor lost when failing over to other DCs in case of (temporary or final) discon-
nection with some DC. Depot [33] support Byzantine faults tolerance, a more difficult
class of faults than Swiftcloud. However it is not designed to scale to large numbers
of clients, to co-locate data with the user without placing a server in the edge machine,
nor does it support transactions. Recently, Simba [35] provides the ability for the edge
application to select the level of desired observable consistency (eventual, causal or seri-
alizability).

In our current work on EdgeAnt (3.1), we retarget our work on Swiftcloud to An-
tidoteDB with extensions to direct communication between edge clients. To improve
edge-to-edge latency, and give collaborative applications the ability to select stronger
(than causal) consistency guarantees.

More and more applications supports collaboration between edge devices by storing
partial shared data in client machines. From medical editors like [10] that uses Google
Drive Realtime [13] a framework that manages shared replicas between clients in the
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same way as Mobius [17] that is used in mobile context, to FPS multiplayer games and
collaborative document editing [24] where a subset of client needs high availability and
serializability on shared metadata. Unlike EdgeAnt, those systems rely on an always-up
connection to centralized server. On the other end, iCloud [9] provides network inde-
pendence, internet disconnected devices can share data (files, calls or text messages) via
bluetooth. EdgeAnt also provides topology independence, with dynamic reconfiguration
of peer-to-peer edge groups.

Offline support for mobile/web apps In the context of web and mobile app develop-
ments, there is a number of established frameworks and libraries for partial replication
of data on client devices. These frameworks support programmers in developing Pro-
gressive Web Applications (PWAs)[7] which support - beside other features - offline
operation. As one major component in such an app stack, Service workers[5] provide
mechanisms for background synchronization, rerouting of requests and receiving of up-
dates in cross-platform PWAs.

PouchDB[6] is an open-source JavaScript database that eases the synchronization
with CouchDB-compatible servers. To this end, stored documents are extended with
meta-data containing the unique, user-defined id and a revision number, which is ob-
tained by hashing the document’s content. When synchronizing a new object state with
the server database, only updates referring to the current revision number are accepted.
Further, concurrent updates on different server replicas can lead to a divergent state, fur-
ther complicating the app development. Our solution, WebCure 3.1, provides a CRDT-
based data model where divergent state can never appear as updates are merged while
respecting the causal relation between updates.

Realm Mobile[8] is a framework, which integrates a client-side database for iOS
and Android with a server-side database. Realm’s approach to conflict handling can be
summarized as follows:

• Deletes always win. If one side deletes an object, it will always stay deleted, even
if the other side has made changes to it later on.

• Last update wins. If two sides update the same property, the value will end up as
the last updated.

• Inserts in lists are ordered by time. If two items are inserted at the same position,
the item that was inserted first will end up before the other item. This means that
if both sides append items to the end of a list they will end up in order of insertion
time.

The authors of the framework state that these rules provide “strong eventual consis-
tency”. However, programmers need to incorporate these semantics into their develop-
ment scheme, whereas WebCure allows for data-type semantics that offer more flexibility.

For a detailed market study on frameworks supporting offline operation for mobile /
web apps via partial replication, we refer to D8.3. / D8.6.

Access control A detailed discussion on state-of-the-art for access control in replicated
weakly consistent datastore can be found in D6.1.
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AQL Geo-replication has become a key feature in cloud storage systems, with data
being replicated in multiple data centers spread around the world. The goal of geo-
replication is to provide high availability and low latency, by allowing clients to access
any nearby replica. To achieve these properties, a number of systems [19, 32] adopt a
weak consistency model, where an update can execute in any replica, being propagated
asynchronously to other replicas.

Writing correct applications under weak consistency can be complex. To address this
problem, several geo-replicated storage systems [4, 18, 44] adopt a strong consistency
approach. While several optimization techniques have been proposed for improving
throughput [18] and latency [34], executing operations involves inter-data-center coor-
dination, with impact on latency and availability.

AQL is closer to systems [30, 39] that provide support for both weak and strong con-
sistency. For helping programmers decide which operation should execute under each
consistency model, several tools have been proposed [11, 22, 29, 30, 37]. These tools,
typically based on static analyses, impose an additional complexity to application devel-
opment that is often non-trivial and require analyzing the application code before exe-
cution. In AQL, the programmer specifies the degree of concurrency allowed and which
database constraints should be maintained – the system enforces the specified concur-
rency in runtime while trying to minimize coordination. Unlike previous approaches,
AQL does not require a prior analysis of the application code, thus supporting access
from multiple applications and application evolution.

AQL provides a consistency level that extends parallel-snapshot isolation [40] with
integrity invariants, in a similar way as snapshot isolation has been extended with in-
tegrity invariants [31]. Our approach for enforcing referential integrity under weak con-
sistency can be seen as an extension of the approach to enforce serializability under snap-
shot isolation proposed by Cahill et. al. [16], be executing additional updates to force
concurrency detection, and using conflict resolution policies to achieve the intended be-
havior.

Multi-cloud query federation Multi-cloud storage is an emerging data storage scheme
used by various types applications. The goal of multi-cloud storage is to enable applica-
tions to use multiple public, and optionally private, cloud storage services transparently,
through a single interface. To achieve this, multi-cloud systems abstract the use of mul-
tiple data storage systems, and offer applications a single, unified namespace. Scality’s
multi-cloud framework, Zenko, enables applications to transparently store and access
data on multiple public and private cloud storage systems using a single storage interface
(AWS S3 API).

An important aspect of multi-cloud storage is the ability to search and retrieve data
across multiple clouds. Zenko provides a federated metadata search functionality, en-
abling data to be retrieved based on their metadata attribute values independent of the
data location. This functionality is the focus of Scality’s use case.

There are a number of commercially available tools that can be used off-the-shelf
to support federated multi-cloud querying. One approach is to use Apache Spark, and
specifically Spark SQL 12. Spark SQL is a parallel SQL engine built on top of Apache
Spark that provides integration between relational and procedural processing. It offers

12https://spark.apache.org/sql/
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a declarative API that integrates relational operators with procedural Spark code. Ob-
ject metadata attributes in Zenko’s data model can be represented as relational data in a
straightforward way. Then metadata queries be implemented using Spark SQL queries.
A disadvantage of this approach is that while Spark SQL can query data from external
sources, it requires relational data to be imported in a specific semi-structured format
(Parquet files). This leads to the need to post-process the contents of Zenko’s metadata
database to generate parquet files, and keep those files updated. Scality has evaluated the
performance of Apache Spark as a tool to perform metadata search. The evaluation 13

showed that Spark incurs a high latency to metadata search operations due to the need
to reload all parquet files for every update needs. Also Spark requires a large amount of
resources to function properly in this scenario.

Zenko’s implementation captures the metadata attributes of each object, along with
the object’s location and stores them in a metadata database that is part of Zenko’s archi-
tecture. Another approach to provide multi-cloud metadata search in this setting is to use
an existing database with indexing and query capabilities as Zenko’s metadata database,
and leverage its querying functionality to implement metadata search. There are muti-
ple data stores that can be used as this metadata database, including Apache Cassandra
14, MongoDB 15, FoundationDB 16, CockroachDB 17 and Tokyo Cabinet 18. Scality
has investigated a number of these options, with the additional requirement that Zenko’s
metadata database should replicate data within a data centre for fault-tolerance. The cur-
rent implementation of Zenko uses MongoDB as it offers acceptable performance and is
well known in the industry. The inherent drawback of this approach in a multi-cloud en-
vironment is that metadata from multiple private and public cloud storage services need
to be propagated to the data centre where Zenko is deployed. This leads to high network
usage, and potentially stale search results as metadata attributes need to be propagated to
Zenko’s metadata database and indexed before becoming searchable.

Moreover, various query federation approaches have been proposed in the academic
literature in the context of query federation over linked data, and query processing in
multistore systems.

Semantic query federation is an approach to query linked data from multiple dis-
tributed datasets. Federated query engines [21, 38] for linked data can provide interesting
insights for aspects of the problem including data source selection and subquery building.
However, these approaches are not directly applicable to the problem of query federation
on cloud storage services due to the differences in the data model and types of queries
between linked data and object storage.

Multistore [20, 27] systems, provide integrated or transparent access to a number of
cloud data stores (NoSQL, HDFS, RDBMS, etc.) through one or more query languages.
These approaches focus on the problem of providing integrated access to heterogeneous
data by defining a global schema for the multidatabase over the existing data and map-
pings between the global schema and the local data source schemas. These techniques
commonly translate a given query to subqueries which are then executed by the local data

13https://www.zenko.io/blog/benchmark-metadata-search/
14http://cassandra.apache.org/
15https://www.mongodb.com/
16https://apple.github.io/foundationdb/
17https://www.cockroachlabs.com/
18https://fallabs.com/tokyocabinet/
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stores. However, in our scenario cloud storage services are less heterogenous and they
typically do not provide support for queries on metadata attributes.

Our solution, Proteus, provides multi-cloud querying by maintaining a geodistributed
index. It can take advantage of storage systems with querying functionalities or extend
systems that do not support querying by building external indexes. Proteus also offers
flexible index and computation placement across a geo-distributed multi-cloud system,
and flexible query processing by allowing caching and database scanning in addition to
indexing, enabling the querying system to make trade-offs according to requirements of
each multi-cloud use case.
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7 Exploratory work
In addition to the core results described in the previous sections, we investigated on
problems directly related to the heavy-edge scenario of WP6, but not reflected in the
Lightkone Reference Architecture and the related software artifacts.

(a) Partial replication on the servers

We have been researching solutions for supporting partial replication that can be inte-
grated in AntidoteDB. The key challenge in supporting partial replication in AntidoteDB
is related with being able to provide the consistency level of AntidoteDB efficiently. An-
tidoteDB provides transactional causal consistency, combining causal consistency with
highly-available transactions, where a transaction reads from a causally consistent snap-
shot. Supporting such consistency level in a partially replicated data stores involves de-
vising an efficient way for accessing both causally consistent data and a database snapshot
that may include data stores in different data centers.

In this period, as discussed in D3.2, we have devised an algorithm to efficiently access
causally consistent data. As our first solution did not support transactions, we have stud-
ied the possibility of integrating it with AntidoteDB. We found out that it would require
important changes to the core of AntidoteDB’s transactional protocol. As such, we have
decided to study how to integrate it in Cassandra, a popular geo-replicated data store. We
expect to use the lessons learnt to support partial geo-replication in AntidoteDB at a later
point.

C3 We next explain how we have integrated C3 in Cassandra, to enforce causal consis-
tency in Cassandra. Our design handles three types of operations: (i) read operations, to
read the state of the database; (ii) write operations, to modify the state of the database;
and (iii) migrate operation, to change the home data center of a client.

Cassandra operations are classified as read or write operations, and their execution
follows the proposed algorithm, which is detailed in D3.1 and in the submitted paper
listed in the end of this deliverable. The key idea, is to decouple the propagation of
causality tracking information and the propagation of operations to remote site. The
causality tracking information for an operation, called label, is generated when the client
submits an operation. For executing a remote operation, the operation and its label must
be received and the operation can only be executed after the dependencies are satisfied
locally.

At each moment, our protocol considers that a client has a home data center. A client
can only issue read and write operations on data objects that are replicated in its home
data center. Thus, prior to execute a read (or write) operation for an object that is not
replicated in its home data center, the client must execute a migrate operation. We note
that applications do not have to explicitly issue migration operations, as our client layer
automatically issues the necessary migrate operations.

To integrate our algorithm with Cassandra, our design needs to: (i) guarantee that the
storage system conforms the requirements of our protocol; and (ii) modify the execution
of operations to integrate our replication scheme.

To guarantee that Cassandra conforms the requirements of our protocol, we only need
to guarantee that after a write completes in a data center, all following reads observe a
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database version that reflects the completed write. In AntidoteDB, this is guaranteed,
but the same may not be the case in Cassandra. To achieve this property in Cassandra,
we need to execute all operations with the LOCAL QUORUM consistency level. After
a write completes in a local write quorum, by the properties of the local quorums, it is
guaranteed that any local (read) quorum intercepts the local write quorum. Thus, any
read will return the value of the write (assuming that no more recent write exists).

To integrate our replication scheme, we needed to make some changes to both the
write execution flow and the read repair replication mechanism.

In Cassandra, the execution of a write starts with the client sending the operation
to the to-be coordinator node. The coordinator propagates the operation to the relevant
nodes in its local data center and to one node in each remote data center, which is respon-
sible to forward the operation to the relevant nodes in the data center. The coordinator
waits for the confirmation that the operation has been executed in a subset of nodes be-
fore responding to the client – the subset of nodes necessary for returning to the client
depends on the client’s consistency level.

We changed the write execution flow as follows. First, we changed the coordinator
code to send the information about the write to the causality layer, as soon as it propa-
gates the operation to the relevant nodes. Second, we changed the code that processes
a write received from the coordinator. Instead of executing the write operation imme-
diately, nodes need to wait until both the operation and the label have been received.
This was implemented by creating a message sink to which all labels and update opera-
tions are redirected. An operation is only executed after the label and updated operations
are received. Finally, we changed the code that replies to the coordinator after a write
operation finishes, by adding code to send an acknowledge to the causality layer.

Cassandra also employs a mechanism called read repair. This mechanism is used to
update replicas that might have not been updated in prior writes (as messages are lost and
the coordinator only waits for replies from a quorum of nodes). Since we do not want
this read repair mechanism to violate causality, by being executed across data centers
and applying updates to nodes where that update’s label has not yet been delivered, we
modified its behavior in order to execute only inside data centers.

We are currently studying how to extend the proposed approach to support transac-
tions, which is necessary for AntidoteDB. The key problem is that, when accessing a
snapshot, it might be necessary to read an object that is not replicated locally. At this mo-
ment, it is necessary to contact a remote replica and wait until the transaction snapshot is
ready. With the current AntidoteDB protocol, this requires the periodic stability protocol
to execute. We are studying if we could build on the migrate operation proposed on C3

algorithm for speeding up this process.

(b) PoR Consistency

The Just-Right Consistency (JRC) approach introduced in D4.1 aims to minimize the
amount of synchronization required to ensure the applications invariants. As mentioned
in the previous section, JRC can be built upon common invariant-preserving program-
ming patterns, such as “ordered updates”, “atomic grouping” and “precondition check”.

We have been exploring different alternatives to implement JRC. In the past, we have
proposed RedBlue consistency [30], which allows some operations to execute under
strong consistency (and therefore incur a high performance penalty) while other oper-
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ations can execute under weaker consistency (namely causal consistency). The core of
this solution is a labeling methodology for guiding the programmer to assign consistency
levels to operations. The labeling process works as follows: operations that either do not
commute w.r.t. all others or potentially violate invariants must be strongly consistent,
while the remaining ones can be weakly consistent.

This binary classification methodology is effective for many applications, thus im-
plementing the JRC approach, but it can also lead to unnecessary coordination in some
cases. In particular, there are cases where it is important to synchronize the execution
of two specific operations, but those operations do not need to be synchronized with any
other operation in the system (and this synchronization would happen across all strongly
consistent operations in the previous scheme). In the past, we have proposed solutions
that allow finer-grained coordination of operations [11, 22].

Concurrently with those works, we have also worked on an alternative generic ap-
proach, Partial Order-Restrictions Consistency (or short, PoR consistency), which takes
a set of restrictions as input and forces these restrictions to be met in all partial orders.
This creates the opportunity for defining many consistency guarantees within a single
replication framework by expressing consistency levels in terms of visibility restrictions
on pairs of operations. Weakening or strengthening the consistency semantics is achieved
by imposing fewer or more restrictions, thus implementing the JRC general idea.

Under PoR consistency, the key to making a geo-replicated deployment of a given ap-
plication perform well is to identify a set of restrictions over pairs of its operations so that
state convergence and invariant preservation are ensured if these restrictions are enforced
throughout all executions of the system. To this end, we propose a set of principles for
guiding programmers to identify the important restrictions while avoiding unnecessary
ones.

Furthermore, from a protocol implementation perspective, given a set of restrictions
over pairs of operations, there exist several coordination protocols that can be used for
enforcing a given restriction, such as Paxos, distributed locking, or escrow techniques.
Depending on the frequency over time with which the system receives operations con-
fined by a restriction, different coordination approaches lead to different performance
trade-offs. Therefore, to minimize the runtime coordination overhead, we also devel-
oped an efficient coordination service that helps replicated services use the most efficient
protocol by taking into account the system workload.

When compared with other works that also allow finer-grained coordination of op-
erations [11, 22], this work makes the following main contributions. First, we propose
a method to find a minimal set of restrictions to be used. Second, we designed a set of
coordination methods that can be used with different workloads, with applications being
modified directly from the identified set of restrictions. More information is available in
our ATC’18 paper, presented in the end of this report.
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8 Publications and Dissemination
The following publications and dissemination activities have been done under WP6 in
the report period M13 - M18.

8.1 Refereed conference and workshop papers
• Cheng Li, Nuno Preguiça, Rodrigo Rodrigues. Fine-grained consistency for geo-

replicated systems. USENIX Annual Technical Conference 2018: 359-372

• Pedro Fouto, Joo Leitão, Nuno Preguiça. Practical and Fast Causal Consistent
Partial Geo-Replication. NCA 2018: 1-10

• Zhongmiao Li, Peter Van Roy, Paolo Romano. Transparent Speculation in Geo-
Replicated Transactional Data Stores. HPDC’18, June 11 - 15, 2018. (Description
of this work was given in D6.1)

• Dimitrios Vasilas, Marc Shapiro and Bradley King. A Modular Design for Geo-
Distributed Querying: Work in Progress Report, Int. Workshop on Principles and
Practice of Consistency for Distributed Systems (PaPoC 2018), Porto, Portugal,
April 23 - 26, 2018.

8.2 Under submission
The following works are under submission:

• Zhongmiao Li, Peter Van Roy, Paolo Romano. Sparkle: Fast and Scalable Deter-
ministic Partitioned Datastore. Under submission.

8.3 Theses
• Angel Manuel Bravo Gestoso. Metadata Management in Causally Consistent Sys-

tems. Doctoral Thesis, Universidade de Lisboa, Instituto Superior Tecnico, and
Universite Catholique de Louvain, June 2018.
https://www.info.ucl.ac.be/∼pvr/manuelbravo-thesis.pdf

8.4 Talks
• Annette Bieniusa. AntidoteDB. PL4DS: Workshop on Programming languages for

Distributed Systems. Feb. 23, 2018, Darmstadt (Germany).

• Nuno Preguiça. Enforcing SQL constraints in weakly consistent databases. Pre-
sentation at Dagstuhl Seminar 18091, Feb. 25 - Mar. 2, 2018, Wadern, Germany.

• Nuno Preguiça. Getting stronger with AntidoteDB. Invited talk at Lisbon IPFS
Hack Week, May 2018.

• Annette Bieniusa. Just the right kind of Consistency!. Keynote talk at Typelevel
Summit Berlin, May 18, 2018, Berlin, Germany. See https://typelevel.org/event/
2018-05-summit-berlin/.
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• Marc Shapiro. Antidote: A developer-friendly cloud database for Just-Right Con-
sistency. Keynote talk at 4th International Conference on Advances in Computing
& Communication Engineering (ICACCE 2018), June 2018, Paris, France.
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