
Project no. 732505
Project acronym: LightKone
Project title: Lightweight computation for networks at the edge

D3.1: Initial Runtime Edge Computing System

Deliverable no.: D3.1
Title: Initial Runtime Edge Computing System
Due date of deliverable: January 15, 2019
Actual submission date: January 15, 2019

Lead contributor: INESC TEC
Revision: 2.0
Dissemination level: PU

Start date of project: January 1, 2017
Duration: 36 months

This project has received funding from the H2020 Programme of the European Union

LightKone Deliverable D3.1(v2.0), January 15, 2019

Revision Information:

Date Ver Change Responsible
15/01/2019 2.0 Revised version ready for submission INESC TEC
15/10/2018 1.1 Starting revision INESC TEC
09/02/2018 1.0 Final Version INESC TEC
27/01/2018 0.3 Incorporating internal reviews UPC & NOVA
20/12/2017 0.2 Content structure INESC TEC
15/12/2017 0.1 1st draft with outline and ToC INESC TEC

Contributors:

Contributor Institution
Ali Shoker INESC TEC
João Marco Silva INESC TEC
Georges Younes INESC TEC
Manuel Bravo UCL
Christopher Meiklejohn UCL & IST/INESC-ID
Annette Bieniusa TUKL
Deepthi Akkoorath TUKL
Igor Zavalyshyn IST/INESC-ID
Paulo Sérgio Almeida INESC TEC
Vitor Enes INESC TEC
Carlos Baquero INESC TEC
Sébastien Merle STRITZINGER
João Leitão NOVA
Pedro Ákos Costa NOVA
Carla Ferreira NOVA
Nuno Preguiça NOVA
Gonçalo Cabrita NOVA
Roger Pueyo Centelles UPC
Marc Shaprio SU
Giorgos Kostopoulos GLUK
Brad King Scality
Dimitrios Vasilis SCALITY
Peer Stritzinger STRITZINGER
Roger Pueyo Centelles UPC
Felix Freitag UPC

LightKone D3.1(v2.0), January 15, 2019, Page 2

Contents

1 Executive Summary 1

2 Introduction 3
2.1 Motivations, approach, and methodology 3
2.2 Contributions . 4

2.2.1 LightKone Reference Architecture (LiRA) 4
2.2.2 Data Abstractions at the Edge 5
2.2.3 Communication support for data at the Edge 5
2.2.4 Scalable data management at the edge 5
2.2.5 Software deliverables . 6
2.2.6 Security analysis of use-cases 6
2.2.7 Exploratory research . 6

2.3 Relation to other WPs . 7
2.4 Summary of Deliverable Revision . 7
2.5 Organization of the Report . 7

3 LightKone Reference Architecture (LiRA) 9
3.1 Introduction . 9
3.2 Architecture View . 10
3.3 Component View . 11
3.4 Use-case View . 13

3.4.1 Distributed monitoring for community network (Guifi.net) 13
3.4.2 Multi-cloud metadata search (Scality) 15
3.4.3 Multi-master geo-distributed storage (Scality) 17
3.4.4 NoStop RFID (Stritzinger) . 18
3.4.5 Precision agriculture (Gluk) . 19

3.5 Edge/Fog System Models and Terminology 21
3.5.1 Taxonomy and Definitions . 21
3.5.2 Heavy Edge . 22
3.5.3 Light Edge . 22
3.5.4 Hybrid Edge . 23

3.6 Related Work . 23
3.6.1 OpenFog RA . 24
3.6.2 EdgeX . 25
3.6.3 ECC RA . 26
3.6.4 Azure IoT RA . 27
3.6.5 Amazon Greengrass RA . 28

3

CONTENTS

4 Plan and Progress 31
4.1 Plan and Milestones . 31

4.1.1 Plan followed in Year 1 (Y1) . 31
4.1.2 Plan for the first half of Year 2 32
4.1.3 Plan for the second half of the project 32

4.2 Data Abstractions at the Edge . 33
4.2.1 CRDTs: state-of-the-art and beyond 33
4.2.2 Towards operation-based CRDTs at the edge 37
4.2.3 State-based CRDTs at the edge 39

4.3 Communication support for data at the Edge 41
4.3.1 Tagged Causal Stable Broadcast (TCSB) 42
4.3.2 Partisan . 43
4.3.3 Erlang Communication Support for Edge computing 44

4.4 Scalable Data Management at the Edge 47
4.4.1 Saturn . 47
4.4.2 Nonuniform replication . 49
4.4.3 Handoff counters . 51
4.4.4 Borrow Counters . 54

5 Software Deliverables 57

6 Security Analysis of Use-cases 59
6.1 Overview . 59
6.2 UPC - Guifi.net community network . 60

6.2.1 Coordination between servers & Data storage for the monitoring
system . 60

6.2.2 Service provision support for the Cloudy platform 61
6.3 Scality . 61

6.3.1 Pre-indexing at the edge . 61
6.3.2 Lambda functions at the edge 61
6.3.3 S3 local cache of central data . 62

6.4 Stritzinger . 62
6.4.1 No-Stop RFID . 62
6.4.2 Smart Metering Gateway . 62
6.4.3 Swarm of Small Satellites . 63

6.5 Gluk - Agriculture Sensing Analytics . 63

7 Advancing State of the Art 65
7.1 LightKone Reference Architecture (LiRA) 66
7.2 CRDTs . 67
7.3 Communication support . 67

7.3.1 Causal Multicast . 67
7.3.2 Erlang distributed protocols . 68
7.3.3 Anti-entropy . 69

7.4 Partial and Non-uniform Replication . 69

LightKone D3.1(v2.0), January 15, 2019, Page 4

CONTENTS

8 Exploratory Research 71
8.1 The Single-Writer Principle in CRDT Composition 71
8.2 Security for the Edge . 72

8.2.1 Privacy-aware IoT Data Management 72
8.2.2 As Secure as Possible Eventual consistency 73

9 Annotated Publications & Dissemination 77
9.1 Publications . 77
9.2 Dissemination . 81

Bibliography 83

LightKone D3.1(v2.0), January 15, 2019, Page 5

Chapter 1

Executive Summary

This deliverable (D3.1) presents the data and communication abstractions and compo-
nents that can be used to build a generic edge computing runtime, as well as the cross-
cutting concerns of LightKone work packages (WPs) including the LightKone Reference
Architecture: LiRA. LightKone advances state of the art of edge/fog computing by pro-
viding highly available and scalable replicated data management strategies. Core to these
solutions are recent advances in Conflict-free Replicated DataTypes (CRDTs) and as well
in their supporting dissemination middleware layers. Consequently, in this deliverable,
corresponding to work package 3 (WP3), we convey contributions on CRDTs as well as
on the underlying dissemination layer. The report also presents a preliminary security
analysis to LightKone use-cases. The core contributions can be summarized as follows:

LightKone Reference Architecture (LiRA). LiRA represents the reference architec-
ture that governs the LightKone contributions across work packages. LiRA is shown to
be compliant with well known state of the art edge/fog computing reference architectures
(as Open Fog), but complements them through addressing the data management layer
and application semantics. LiRA is composed of several artifacts that span a wide spec-
trum of edge/fog networks and scenarios including, what we also define, heavy, light,
and hybrid edge. LiRA satisfies the needs of LightKone’s use-cases as well as other ones
as we show in this report.

Data and communication abstractions. We extended the existing CRDT datatypes,
both state-based and operation-based, both by providing more comprehensive catalogues
of datatypes, and through improving their efficiency on the data and communication lev-
els (via reducing the meta-data stored and disseminated at the edge). We have introduced
hybrid gossip-based group membership libraries supporting diverse and dynamic edge
network topologies as well as improving the Distributed Erlang OLP library. Finally, we
introduced new scalability solutions based on partial replication for heavy edge networks,
and other scalable counter datatypes avoiding identity explosion in large edge networks.
The corresponding developed software are also presented.

Security analysis. Finally, we provide a preliminary security analysis to LightKone
use-cases.

1

CHAPTER 1. EXECUTIVE SUMMARY

LightKone D3.1(v2.0), January 15, 2019, Page 2

Chapter 2

Introduction

With the immense volumes of data generated and computed at the cloud data centers,
there is a need to move part of storage and computation towards the edge of the network.
This brings many benefits like reducing the volumes of data traveling to cloud data cen-
ters and avoiding potential bottlenecks, improving the availability of services, privacy,
etc. This comes at the price of new data and communication challenges at the entire
edge software stack, among them, scalability, heterogeneity, resilience, and security. In
this work package, i.e. WP3, we study and provide the building blocks for a generic
edge computing runtime with special emphasis on data abstractions and communication
protocols, while including the cross-cutting concerns of other work packages. In partic-
ular, this deliverable D3.1 presents the LightKone Reference Architecture (LiRA) that
governs LightKone’s artifacts and components. The deliverable then presents the basic
data abstractions and their supporting communication protocols through filling some of
the existing gaps in both functional and nonfunctional properties supporting edge appli-
cations. We demonstrate how these components contribute to building LiRA’s artifacts.
Finally, we present the use-case security requirements to address in the next deliverable.

2.1 Motivations, approach, and methodology

Motivations. There is a notable interest in the Edge/Fog computing paradigm which
lead to several academic and industrial projects targeting the entire software edge com-
puting stack. However, as we show in Chapter 7, state of the art (SOTA) solutions revolve
around the following pattern: edge devices stand as intermediary relays that summarize
the collected data from the source, pushing them towards the data center (or other edge
layers), and/or feeding the processed data back to the edge of the network (e.g., actu-
ators). Although interesting, this does not cover the scenarios where edge devices can
share and process data (through replication) when the cloud data center is unreachable or
the cost of reaching it is high. The default option could be to use a replication scheme
with classical strong coordination, e.g. Paxos or Raft, however, these solutions are likely
not suitable given the dynamics and connection brittleness often present in edge net-
works. Conditions that may lead to the violation of the semantics and properties of edge
applications, namely their expected availability.

3

CHAPTER 2. INTRODUCTION

Approach. In LightKone, and WP3 in particular, we tackle this challenge through fol-
lowing a relaxed data consistency model where data and computation are replicated
over loosely coupled edge machines on the premise that replicas will eventually con-
verge. Consequently, we build on the success of Conflict-free Replicated DataTypes
(CRDTs) [84] which were developed in EU FP7 Syncfree project [34], and extend them
to support edge computing. CRDTs are data abstractions that are mathematically guar-
anteed to converge when replicas eventually apply the same (likely concurrent and com-
mutative) operations. This also requires a supporting communication layer that can even-
tually deliver operations or changes across replicas respecting specific requirements like
causality. We address this layer through developing convenient causal broadcast middle-
wares and anti-entropy gossip-based protocols.

Methodology. In his work package we try to provide the distributed data and commu-
nication abstractions necessary to build generic edge computing runtimes that are highly
available, convergent, and reliable. Since the target is generic edge computing, we fol-
low two complementary directions. The first is to directly address the requirements of
the LightKone use cases that eventually manifest in the artifacts shown in LiRA after fur-
ther development specific to other work packages, namely WP5 (Light Edge) and WP6
(Heavy Edge). However, since LightKone use cases are only a sample of the edge ap-
plication space, we believe it is necessary to provide edge components with features that
support generic edge runtimes beyond LightKone’s use cases—as long as they are feasi-
ble for other edge applications. We believe this is consistent with the nature of Research
and Innovation projects in which a wider applicability is desired.

2.2 Contributions

We summarize the key contributions of WP3 for year 1 (Y1). The contributions follow
a plan that roughly follows the LightKone proposal, and presented in Chapter 4. These
contribution are summarized as follows.

2.2.1 LightKone Reference Architecture (LiRA)
We present the LightKone Reference Architecture (LiRA) that is designed for the support
of applications, computations and data in fog and edge networks. LiRA is compatible
with state of the art (SOTA) reference architectures but complementary as it focuses in
application-level data management, mainly CRDTs [84] and communication support. It
is thus possible in LiRA to share data at the same edge level as well as across fog lev-
els. LiRA presents in the Architecture View the several artifacts developed in LightKone
demonstrating their coverage of a wide range of fog networks and hardware. These ar-
tifacts are built using software components and libraries developed in cooperation with
WP3, and presented in the Component View. These components also serve as build-
ing blocks for generic edge/fog runtimes beyond LightKone. On the other hand, we
demonstrate in the Use Case View the feasibility of LiRA to various LightKone use cases
through explaining the workflow and the interplay between its artifacts in each use case.
Finally we present the relation to SOTA edge/fog architectures, and we present the ter-
minology and classification we adopt in LiRA.

LightKone D3.1(v2.0), January 15, 2019, Page 4

CHAPTER 2. INTRODUCTION

2.2.2 Data Abstractions at the Edge

Although proven successful in geo-replication, the current state of the art (SOTA) of
CRDTs [84, 92] cannot satisfy the needs of the edge for several reasons attributed to the
hostile edge networks and constrained devices, e.g., efficiency, scalability, heteroginity,
etc. In this report, we focus on efficiency, and we aim at further progress in future reports.
In particular, in Section 4.2, we present optimizations for several variants of state-based
and op-based CRDT models through reducing the meta-data shipped over the network
and stored in devices. Some of these contributions involved hands-on optimizations for
CRDT implementations embedded in LightKone artifacts, as in AntidoteDB [35] (pre-
sented in detail in WP6). In addition, we tried to fill the gap of missing datatype speci-
fications by providing a portfolio for various variants of counters, registers, sets, maps;
and support important and challenging operations as “reset” [7, 17].

2.2.3 Communication support for data at the Edge

The data management techniques and datatypes mentioned above assume the presence
of an underlying dissemination layer with properties that support general cloud and edge
applications (e.g., causality), as well as networks (e.g, scalability and dynamicity). In
particular, the work on advanced Pure op-based CRDTs [17] assume the presence of a
causal middleware that is efficient and supports “causal stability” which is novel to SOTA
causal middlewares [17, 18, 88]. In Section 4.3, we present a middleware that supports
these features. On the other hand, all the dissemination protocols used in the previous
sections are implemented using Distributed Erlang that has known limitations in paral-
lelism and no support for cluster topologies (by assuming full mesh). We developed a
communication library called Partisan in a previous project (FP7 Syncfree [34]) that im-
plements two group membership protocols, i.e., Plumtree [86] and HyParView [63], that
are efficient hybrid gossip protocols. In LightKone, we developed Partisan further to
support edge networks and edge applications. In particular, we now support: dynamic
network topologies, different application patterns, sending in multiple channel. At a
lower protocol layer, we are working with Ericsson to develop the Distributed Erlang li-
brary to support generic networks with routing instead of relying on full connected mesh,
avoiding the scalability limitations of the full mesh (where the number of connections in
the cluster grows quadratic to the number of nodes).

2.2.4 Scalable data management at the edge

Data scalability is an essential feature to support edge networks and applications. There
are at least two scalability dimensions of particular interest at the edge: storage and
network size. The former differs from classical cloud systems given the relatively lim-
ited storage capacities of edge devices, even those at the heavy edge like micro data
centers [55, 68, 95]. A natural technique to address this challenges is to use partial
replication (a.k.a., partitioning or sharding). SOTA data partitioning is inadequate to
edge systems due to the overhead of metadata and voluminous payloads disseminated
especially when some properties, like causal consistency, are needed [66, 67, 111]. In
Section 4.4, we introduce two solutions to address data partitioning through reducing the
meta-data disseminated, as explained next in Saturn, or even avoid sending the payload if

LightKone D3.1(v2.0), January 15, 2019, Page 5

CHAPTER 2. INTRODUCTION

unnecessary, as explained next in nonuniform partial replication. The other dimension is
addressing the increasing network size likely in edge networks and applications. In par-
ticular, highly available datatypes as CRDTs can only scale to few tens of nodes due to
the incurred metadata overhead [7, 17, 84]. To that end, we introduce two techniques that
provide highly scalable counters using hierarchical containment (i.e., Handoff Counters)
or transient identity borrowing (i.e., Borrow Counters).

2.2.5 Software deliverables

In Chapter 5, we present the software deliverables, libraries, and components in which the
contributions presented in this report appear. Most of these software are direct artifacts
that show in LiRA or used as backend components and libraries. Since this work package
is meant to provide the support to build generic edge computing runtimes, we believe
that developing fine-grained components is crucial to increase the impact of LightKone’s
work on external edge computing platforms. Indeed, although LiRA perfectly fits the set
of LightKone use-cases, the latter represents a sample edge computing set of applications,
and thus addressing more use-cases may require building other edge computing runtimes.
To this end, the components provided in this deliverable can be used in building new edge
runtimes or integrated in existing ones to leverage the technology LightKone provides.
All presented software are made available on Github.

2.2.6 Security analysis of use-cases

Although important, LightKone’s contribution on security is limited to analyzing the se-
curity threats and requirements of LightKone use-cases (presented in deliverable D2.1).
The corresponding solutions can then be selected by using standard off-the-shelf security
methods and tools or through developing novel solutions. Since LightkKone’s focus is
mainly on data managements and communication, Chapter 6 only highlights the open is-
sues and potential threats, recommend off-the-shelf security measures, and develop new
solutions to only part of these threats—as defending against DoS attacks in WP5. The
analysis concluded that the majority of use-cases (UCs) share requirements that involve
balancing data integrity, confidentiality, availability and authentication with some kind
of constraint in such entities. Another conclusion is that most of the threats are often on
the light edge part. The analysis also gave example of some research topics might ben-
efit all use-cases: lightweight cryptography for Light-edge environments, Homomorphic
encryption algorithms, cross-platform software sandboxing, and DoS identification and
prevention.

2.2.7 Exploratory research

Finally, we present the exploratory research work that is not at the core of LightKone,
though related. These works have the potential of more exploration or inspiration in
the future. For instance, we present the Single-Writer principle that discusses the cases
where some CRDTs may not incur concurrency. We also include two security works for
Privacy-aware IoT Data Management at the light edge and Byzantine resilient protocol
for heavy and possibly light edge.

LightKone D3.1(v2.0), January 15, 2019, Page 6

CHAPTER 2. INTRODUCTION

2.3 Relation to other WPs

Work packages addresses the cross-cutting concerns across all other work packages and
thus it depicts a natural overlap with most of them. First, LiRA describes the interplay of
the various artifacts developed in work packages WP5, WP6, and with the help of WP4.
Second, the work developed in WP3 is focused at generic components and techniques
to build edge runtimes; the artifacts developed in WP5 and WP6 demonstrate practical
examples how to use these components to build light and heavy edge runtimes. For in-
stance, the designed CRDT libraries in this deliverable represent the building blocks of
the data models in D4.1 and implementations in D5.1 and D6.1. In particular, Antidot-
eDB is developed in WP6 and uses the optimized op-based CRDTs, whereas Lasp and
Legion developed in WP4 and WP5 uses the delta- and state-based CRDTs. Similarly,
some of the communication protocols developed in WP3 like Partisan is being used as
the underlying communication layer of Lasp. Third, non-uniform replication is being
used in AntidoteDB and explored in Yggdrasil in WP6 and WP5, respectively. Fourth,
the work on improving the Erlang VM overlaps with WP4, 5, and 6 since all artifacts are
built in Erlang as a lower layer. Finally, the work on security analysis and application
support in this deliverable builds on the use-cases presented in D2.1, and discusses the
security measures that should respect the requirements in WP1.

2.4 Summary of Deliverable Revision

This deliverable has been revised since its original submission to incorporate comments
and modifications requested by the European Commission Reviewers. The main changes
made to the deliverable are as follows:

• Introduced the Lightkone Reference Architecture (LiRA).

• Introduced a literature review for state of the art (SOTA) works showing how the
WP advances beyond it.

• Introduced the plan we followed in Year 1 and the future plan to achieve the men-
tioned milestones.

• Revised all sections to improve presentation with referencing to the SOTA, framing
the contribution, how it advances beyond SOTA according to the plan, and the
respective future plan.

• Removed all documents in the appendix and replaced them with annotated bibliog-
raphy for the convenience of the reader; and dedicated a section for dissemination
activities carried in the context of this work package.

2.5 Organization of the Report

The rest of the report is organized as follows:

LightKone D3.1(v2.0), January 15, 2019, Page 7

CHAPTER 2. INTRODUCTION

Chapter 2: LightKone Reference Architecture (LiRA) presents the LightKone Ref-
erence Architecture and the terminology followed in LightKone.

Chapter 3: Plan and Progress presents the plan we followed in WP3 and the work
progress considering the data and communication abstracts.

Chapter 4: Software Deliverables conveys the software deliverables developed in
WP3 together with other WPs.

Chapter 5: Security Analysis of Use-cases presents the preliminary LightKone use-
case security analysis.

Chapter 6: State of The Art presents the state of the art of the areas covered in this
report.

Chapter 7. Exploratory Research presents other research works that are minor to
LightKone.

Chapter 8: Annotated Publications & Dissemination presents a synopsis of the pub-
lications and dissemination in WP3.

LightKone D3.1(v2.0), January 15, 2019, Page 8

Chapter 3

LightKone Reference Architecture
(LiRA)

3.1 Introduction
The LightKone project aims to develop solutions for supporting the creation of sys-
tems and applications that can execute general-purpose computations in edge networks
with the goal of providing high availability, responsiveness, and fault tolerance. The
LightKone project takes a broad view of edge, close to a unified ”fog” vision encom-
passing the whole spectrum of devices and networks from core cloud computing (based
on heavyweight data centres with abundant storage, computation, network and support
resources), to points-of-presence, and all the way to lightweight user devices (featuring
mobility, on-off presence, scarce resources, and absence of expert administration).

The LightKone Reference Architecture (LiRA) provides an overview of the architec-
ture and technology that can be used for developing systems and applications that run
in edge networks. LiRA consists of a set of general-purpose components, with a uni-
form semantics, that together support fog and edge computing functionality, combining
high availability and correctness. This includes highly-available distributed data types
(e.g., CRDTs), resilient and durable distributed storage (e.g., key-value stores), highly-
available and consistent data-sharing models (e.g., Transactional Causal Consistency),
security, support for both OLAP and OLTP-style computation placed at strategic loca-
tions in the network, discovery, etc. They are designed to function correctly and to scale
without friction, in the presence of slow, unreliable and dynamic networks, which are
inherent features of the edge.

We structured the presentation of LiRA according to the following “Views”:

• Architecture View: this view presents the artefacts developed in the context of
LightKone, covering the edge computing spectrum, and how they can be combined
for developing edge computing solutions.

• Component View: this view presents the generic components that can be used in
edge computing solutions, and that are used, in particular, in the artefacts developed
in the context of LightKone.

• Use-case View: this view depicts how the artefacts and components interplay to
serve the purposes of each use-case.

9

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

Figure 3.2.1: Architecture View.

For the rest of this chapter, we present these Views, and then we present the edge/fog
system models and terminology followed in LightKone. We finally discuss the relation
of LiRA to state of the art fog/edge architectures.

3.2 Architecture View
The Architecture Viewpoint (Figure 3.2.1) presents the artefacts developed in the context
of the project and how they address the challenges posed by developing applications
for edge computing scenarios. We broadly classify the artefacts in Heavy, Light, and
Thin according to the settings where they were designed to run, with each setting posing
specific challenges that need to be addressed using different techniques. We now give a
brief overview of the type of artifacts developed and how they relate (the list of artefacts
is not exhaustive), and a summary of these artefacts is presented in Table 3.2.1 (at the end
of this chapter).

The Heavy-Edge artefacts were designed to run in nodes with substantial storage and
computation capacity (like nodes in public and private cloud infrastructures and ISPs).
In this context, we focused in two types of artefacts: replicated data management sys-
tems and indexing services. A data management system will be used by applications to
store application data. The key requirements of such system is to provide high avail-
ability, fault-tolerance and low latency to clients. AntidoteDB is a highly available geo-
distributed database that provides address these requirements. The indexing services can
be used by applications to provide efficient search of the application information, which
can be potentially stored in different databases. Proteus is a system that can be used for
such purpose. When necessary, we expect that applications will rely in other types of
services, such as messaging services like Apache Kafka, or data processing frameworks
like Apache Spark or Apache Storm to fulfill their needs.

The Light-Edge artefacts were designed to run in personal nodes with different stor-
age and processing capacities, including smartphones, laptops and users’ servers. In this
context, we focused mainly on artefacts that support data sharing and communication

LightKone D3.1(v2.0), January 15, 2019, Page 10

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

among devices. The key challenges in this context are to provide low latency of interac-
tion among devices, high availability despite node disconnection (including disconnected
operations) and address the specific needs of different applications. EdgeAnt provides a
cache that allows applications to access data stored in Antidote with low latency, by rely-
ing on the data stored in the local cache. It additionally provides support for disconnected
operation. WebCure has similar goals, but it is designed to support web applications what
run in browsers, thus having to address the challenges posed by running in the browsers’
constrained environment. Legion extends WebCure goals by supporting direct interaction
among clients, for low latency in interactions among clients. It also supports interaction
with different cloud services. For applications that cannot run on top of the data sharing
services provided by the LightKone artefacts, we have developed Partisan, a communi-
cation middleware that can be used for exchanging data among multiple nodes. Partisan
can be used by applications with different requirements, providing an efficient commu-
nication substrate that simplifies the development of such applications.

The Thin artefacts were designed to run in the small devices with low memory and
storage capacity, including sensor nodes, “things” and mobile devices. In this context we
focused in the following types of artefacts. First, communication services for propagat-
ing information among nodes of the systems. Yggdrasil provides a generic framework
for designing distributed protocols for ad-hoc networking. For example, we have used
Yggdrasil for designing an aggregation protocol, that can be used for collecting informa-
tion from sensors and eventually propagate it to an external service (e.g. Antidote or one
of the Light-Edge artefacts). Second, software for embeddable devices. Grisp software
stack provides efficient communication for application running in ErlangVM in the Grisp
nodes. Finally, data sharing services embeddable devices. In this context, LaspOnGrisp
provides a key-value store that allows applications running in embeddable devices an
high-level abstraction for data sharing.

3.3 Component View

The Component viewpoint presents the essential building blocks that are helpful to sup-
port general-purpose edge computing. These building blocks can be combined and used
in the implementation of a specific artifact (or sub-system), for providing a general-
purpose service, such as geo-distributed communication, notification, storage, searching,
computation, etc.

We classify the building blocks that we have been developing in three main groups:
Communication, Data Management, and Computation. Tables 3.3.1, 3.3.2, and 3.3.3 list
some of the key components implemented in the context of the LightKone project, with a
brief description, previous state of the art, novelty, implementation artefact, and reference
to the section for more reading.

LightKone D3.1(v2.0), January 15, 2019, Page 11

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

Table 3.3.1: Communication components.

Component Description Previous SOTA Contribution Artefact Reference
Causal Deliv-
ery and sta-
bility middle-
ware

middleware for causal
consistent systems
and op-based CRDTs

Redundant meta-data in
causal delivery

Reduced meta-data in
causal delivery; causal
stability concept

None D3.1

Causal Deliv-
ery and sta-
bility middle-
ware

middleware for causal
consistent systems
and op-based CRDTs

reduced meta-data
in causal delivery;
causal stability con-
cept;causality issues
in callback-based
and independent
threads/processes.

End-to-End Causal Deliv-
ery; Correct tagging; Im-
plementing Causal Delivery
and Stability

None D3.2

Distributed
Communica-
tion

Edge-tailored alterna-
tives for distribution
layer for Erlang.

Plumtree, HyParView;
Erlang distribution

Partisan: Hybrid gossip-
based with different net
topologies and various clus-
ters; mesh-based EVM.

Lasp,
LaspOn-
Grisp

D3.1

Distributed
Communica-
tion

Edge-tailored alterna-
tives distribution layer
for Erlang.

Partisan: Hybrid
gossip-based with
different net topologies
and various clusters;
mesh-based EVM.

Partisan channel-based full
mesh back-end; evaluation
(# of nodes scalability);
EVM API with custom im-
plementations

Lasp,
LaspOn-
Grisp

D3.2

Table 3.3.2: Data management components.

Component Description Previous SOTA Contribution Artefact Reference
State CRDT State-based data man-

agement for relaxed
consistency at the
edge

Not generic enough;
few datatypes

Generic framework;
many datatypes; join-
decomposition

Legion,
Lasp

D3.1

Op CRDT Operation-based data
management for re-
laxed consistency at
the edge

Non-edge-tailored
datatypes; few
datatypes; not generic

Generic framework; op-
timized edge-tailored
datatypes; support resets;
many datatypes; resettable
counters

AntidoteDBD3.1

Op CRDT Operation-based data
management for re-
laxed consistency at
the edge

Generic framework;
optimized datatypes;
support resets; many
datatypes

Compression at the source None. D3.2

Scalable
Counters
(Handoff and
Borrow)

Datatypes scalable
with the number
of edge nodes or
dynamicity

blocking sync
datatypes; ID explosion

scalable counters using hi-
erarchical trees; transient
IDs for counters; single
writer principle

None D3.1

Saturn Partial replication
(sharding) meta-
data handling with
causality support

Causal multicast proto-
cols; Cure protocol for
causal delivery

Reduced metadata propaga-
tion for enforcing causality;
timely delivery of updates

None D3.1

C3 Improved Partial
replication (sharding)
meta-data handling
with causality support

Saturn Improved concurrency on
the server

None D3.2

LightKone D3.1(v2.0), January 15, 2019, Page 12

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

Table 3.3.3: Computation components.

Component Description Previous SOTA Contribution Artefact Reference
Mirage Protocol for aggrega-

tion in ad-hoc net-
works

Distributed aggregation
protocols

Efficient handling of varia-
tion of input values

Mirage @
Yggdrasil

D5.2

Computation
CRDTs

CRDTs for which the
state is the result of
a computation over
the executed opera-
tions (e.g. aggrega-
tion results), adopting
the non-uniform repli-
cation model

Distributed aggregation
protocols

Non-uniform replication
model; integrates computa-
tions with the storage

Antidote-
DB

D3.1

Distributed
analytics
middleware

Middleware for ana-
lytics computations
on federated data
stores

Apache Spark, Multi-
store systems

Bidirectional data-flow
computations using mate-
rialized views. Modular
distributed architecture that
enables flexible data and
computation placement.

Proteus D6.2

3.4 Use-case View

The use-case view shows how the artefacts and components developed in the context
of the project, and presented in the other views, can be combined to serve the purposes
of each use-case. Being diverse, each use-case is depicted in a separate Use-case View
highlighting the useful artefacts that could be used to address its requirements and tech-
nological needs.

3.4.1 Distributed monitoring for community network (Guifi.net)
Guifi.net has built IP communication network where a large part of the network is formed
by many interconnected commodity wireless routers and some parts are build with fibre
optics connectivity.

For the management of the network, these commodity wireless routers need to be
monitored in order to confirm correct operation, monitor traffic, and detect any issues
with the connection and operation of these routers.

For the monitoring of these routers, hundreds of servers are run inside of Guifi.net
by individuals and diverse organizations. These monitoring servers, often also used for
other tasks, connect periodically to these routers and applying SNMP (Simple Network
Management Protocol), obtain operational information of the routers. The operational
information collected by the monitoring servers can be visually inspected in the Guifi.net
Web.

As detailed in D2.1, there are several important limitations in the current implemen-
tation of the monitoring system use case of Guifi.net. Among these limitations is the
fact of having single point of failures in several functions. For instance, a router is only
monitored by a single server. The assignment is done once manually and not updated.
The monitoring data is stored only locally in each monitoring server for graphical visu-
alization without further processing and analysis. As a consequence, once a monitor is
disconnected, the information about a router is lost. Disconnection can be temporarily,
e.g. network or server issues, or permanently.

The new implementation of the distributed community networking use case aims to
improve the current situation with several features: First, we aim to monitor each router

LightKone D3.1(v2.0), January 15, 2019, Page 13

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

by a set of monitoring servers. Failures in one of the monitoring servers will still enable to
monitor the router by the other servers. In addition, the assignment of monitoring servers
to routers will be made dynamic, i.e., in the regime of permanent operation, the assign-
ment can be updated by the servers in a decentralized way as to contextual information
(e.g. temporary network situation, server load, relevance of the router). Secondly, we
aim to store and merge the monitored information. Each router is monitored by several
servers. The data collected by each monitoring server is to be merged and stored to enable
further processing and analysis. The new implementation brings the benefits of a more
robust system and opens the door to conduct a deeper network analysis, which in turn is
important for the mechanism which Guifi uses for the sustainability of the network.

Figure 3.4.1: Distributed monitoring for community network (Guifi.net)

With regards to the artifacts developed in the LightKone project, as Figure 3.4.1,
we currently use Antidote as a distributed storage service in the new implementation
of the monitoring system. For the server to router assignment, decentralized read and
write operation will be done on the storage service by each server in order to allow
the coordination between the decision of each server. Yggdrasil and EdgeAnt have the
potential to provide additional features to the use case implementation. For the storage
of the monitoring date, for each router there will be monitoring data from several servers.
This data will need to be merged or transformed into a single data stream or representation
such that the data becomes useful for the needs of other network management services in
Guifi.net.

The devices involved in the use case include commodity wireless routers and the het-
erogeneous servers, which monitor the routers and use the distributed storage service.
The servers are heterogenous not only from the perspective of their their computing ca-
pability, but also from their connectivity, maintenance, ownership and operational policy.
The devices thus represent features both from LightKone’s heavy and light edge perspec-
tive. Note that monitoring monitoring service and the storage service mainly runs on the
same hosts, and initially we do not foresee a separate infrastructure for the monitoring
service and the storage service. We may however decide to use the set of more powerful
servers for the storage service for the case of the monitoring data. The mentioned hetero-
geneous servers available in Guifi.net range from Single-Board-Computers such as the
Raspberry Pi, to more powerful mini-PCs up to server-class desktop PCs.

LightKone D3.1(v2.0), January 15, 2019, Page 14

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

3.4.2 Multi-cloud metadata search (Scality)

We first briefly summarize the context and system model of the use case, and we then
present the current status of the system, and finally how we aim to use LightKone’s
artefacts to for implementing the use case.

(a) Context

Scality has implemented an open source framework (Zenko Multi-Cloud Controller) that
enables applications to transparently store and access data on multiple public and private
cloud storage systems using a single unified storage interface (the AWS S3 API). Ap-
plications can use Zenko to access multiple cloud storage systems, including Microsoft
Azure Blob Storage, Amazon S3 and Scality RING with the same API, and can addition-
ally define policy-based data replication and migration services among these clouds.

The focus of the use case is Zenko’s capability to support federated metadata search
across multiple cloud namespaces. This enables applications to retrieve data by perform-
ing queries on metadata attributes, such as file size, timestamp of last modification or
user-defined tags and others, independent of the data location.

(b) System Model

The system model consists of a small number of geo-distributed cloud data centres, and a
larger number of client devices (user servers & desktops, laptops). Some of the data cen-
tres fully replicate data, representing geo-replicated cloud storage systems, while others
store disjoint datasets, representing different clouds storage systems (ex. DC1 & DC2
= AWS S3, DC3 & DC4 = Scality RING). An instance of Zenko is deployed on one of
those data centres.

Clients perform reads and writes using the S3 API either through Zenko, who then
forwards operations to the appropriate clouds (in-band operations), or by communicating
directly with a backend cloud storage service (out-of-band operations). Clients can also
perform metadata search queries through Zenko using an SQL-like interface.

In order to provide metadata search, Zenko captures and stores object metadata at-
tributes in a database. This database is replicated within a data centre for fault-tolerance
using a protocol such as Raft. MongoDB is used as this metadata database in the current
implementation of Zenko. Metadata attributes are stored in MongoDB as JSON object
and Zenko takes advantage of MongoDB’s indexing and search capabilities to support
metadata search.

For in-band write operations, metadata attributes are captured and stored in the meta-
data database. For out-of-band write operations, metadata attributes are eventually prop-
agated to Zenko’s metadata database using event notification mechanisms provided by
the cloud services.

(c) Use-case implementation

The use case aims at introducing a geo-distributed metadata service as a replacement to
the current more centralized approach which gathers and stores metadata attributes on a
database placed on a single data centre.

LightKone D3.1(v2.0), January 15, 2019, Page 15

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

Figure 3.4.2: Multi-cloud metadata search (Scality)

For this, we will use case two LightKone artefacts: (1) Proteus and (2) Antidote, as
convyed in Figure 3.4.2.

Proteus can be used for deploying a modular geo-distributed hierarchical network of
microservices. Each microservice is responsible for receiving an input stream of data,
optionally maintain a user-defined materialized view of the input steam, and provides a
query-like service by performing data-flow computations on the input data and/or its ma-
terialized view. Proteus enables flexible placement of data and computations by allowing
microservices to be placed on different parts of a geo-distributed system.

For this use we have implemented query processing microservices in Proteus. Each
microservice receives write operations executed in a cloud storage system as an input
stream, maintains a (partial) index on metadata attributes, and provides a metadata search
service using this index.

These microservices are organised as a hierarchical network that implements a geo-
distributed index. The index is partitioned, and index partitions are distributed among
data centres. Metadata search queries are executed by performing distributed computa-
tions on this network: a given query is incrementally split in simpler sub-queries, and
sub-queries are processed by different microservice components using their index parti-
tions.

More specifically, we use Proteus by deploying query processing microservices as
Docker containers on multiple data centres (and potentially even on client machines),
and providing each microservice with a simple configuration describing its behaviour,
its connections to neighbouring microservices within the network, and its connection
with the underlying storage system. Proteus then handles the communication among
microservices for performing distributed computations.

Microservices in Proteus use Antidote as a backend database for storing indexes as
CRDTs. We are also currently investing using Antidote for providing causality and atom-
icity guarantees for search results (atomicity: a search query should either observe all the
updates performed within a transaction, or none)

We aim to make use of Proteus’ ability to enable flexible data and computation place-
ment for allowing Zenko’s metadata search service to make trade-offs between search
latency, query result freshness and the storage overhead of maintaining indexes.

LightKone D3.1(v2.0), January 15, 2019, Page 16

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

3.4.3 Multi-master geo-distributed storage (Scality)

(a) Context

Scality’s object storage system (RING) supports ”active-passive” geo-replication. Data
are geo-replicated across multiple sites (data centres), but can be updated on only one of
those sites. The other sites are read-only during normal operation, and serve as backups
that are ready to take over in case of a failure of the active site. The goal of this use
case, shown in Figure 3.4.3, is to support active-active geo-replication in Scality’s object
storage system, where data on multiple sites will be updated simultaneously and changes
will be merged deterministically.

(b) Data and system model

The data model is that of object storage: the system stores a set of objects, organised
in buckets which form a flat namespace. Each object consists of a key that uniquely
identifies the object within a bucket, a blob of uninterpreted data, and a set of metadata
attributes, such as content size, creation timestamp and user-defined tags. Buckets also
contain similar metadata attributes. More importantly each bucket maintains a primary
index with the keys of the objects which it contains. Data are immutable, modifying the
data creates a new version of the object, while metadata attributes can be updated. Scal-
ity’s storage system performs separation of data and metadata. Data are stored in Scality’s
RING storage platform while metadata are stored in a separate metadata database.

Figure 3.4.3: Multi-master geo-distributed storage (Scality)

(c) Use-case implementation

The key idea of this use case is to use Antidote as a metadata database for Scality’s object
storage system (as shown in Figure 3.4.3). An Antidote data centre will be deployed on
each site. Metadata attributes will be stored in Antidote as CRDTs, and Antidote will
handle the geo-replication and convergence of concurrent updates. Data will still be
stored in the Scality RING and replicated using the existing mechanism.

LightKone D3.1(v2.0), January 15, 2019, Page 17

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

3.4.4 NoStop RFID (Stritzinger)

(a) Context

Prior to the project we have developed several RFID subsystems for Boschrexroth some
of them are widely used in production at industrial automation customers of Boschrexroth
and others have been used as prototype in research and innovation demonstrators. Usually
these RFID systems communicated with a reusable TAG mounted on workpiece carriers
in manufacturing tracking and guiding the production steps for a single workpiece in
manufacturing per tag. Since the used RFID radio systems are short ranged they can also
provide reliable identification of which workpiece is entering a processing station e.g.

These legacy systems are implementing a local cache for the RFID content of the tags
before the antenna. These local caches are mainly to provide optimized abstraction of the
block structure of most of modern tags and some limited drive by behavior of automat-
ically reading user configurable parts of the tag content which then can be perused later
by a local manufacturing process the reader is connected to.

The legacy model in practice very often needs to stop the workpiece carrier to either
read more data and always to reliably write data (which requires a read, modify, write,
read for verify sequence), throughput and utilisation of a factory is reduced by these
waiting times which either occur before and after a processing station or even in the
station itself. In any case this results in unnecessary pauses where the processing station
is idle.

The new system we are prototyping in LightKone will replace these localized caches
by a fully distributed cache over the networked RFID readers of a assembly line. When
implementing this we need to take care to keep the semantics of the preexisting system
from the view of a processing station accessing a single reader before. We keep this single
connection from processing station to RFID reader network node (while now being open
to add redundant connections to other nodes for fault tolerance in the future).

(b) Data and system model

We plan to implement this distributed cache with the semantic of an array of register
CRDTs. One for each byte in the RFID content, containing the value if known and meta-
data for caching functionality. The semantics for concurrent writes would be “last writer
wins” with the additional twist that the write ordering is determined by the physical path
of the RFID tag through the manufacturing system. In order to allow this and provide
write operations to a process station after the tag already left the reader position (we
don’t stop anymore) we add to these register writes a version field which is stored on
the RFID tag and incremented every time it is accessed for writing at a RFID antenna.
These version fields can be used to order the writes in the distributed cache in the seman-
tically correct ordering no matter in which temporal order they have been processed and
distributed in the Network.

In order to associate the correct cache content with a certain tag all these arrays of
registers will be stored in a distributed Key-Value (KV) store. The keys in this KV store
are the unique id that all modern RFID tags have built in. The values are the arrays of
CRDT registers as described above.

For anti entropy process in this distributed KV store with CRDT values we plan to
use a lightweight gossip protocol implementation. From other parts of the future system

LightKone D3.1(v2.0), January 15, 2019, Page 18

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

we will have physical network topology information which allows us to identify our
neighbors and set up the gossip protocol in a way that no redundant information is sent
over the same physical network link twice, reducing the network utilization.

(c) Use-case implementation

We have ported our GRiSP platform for embedded Erlang systems to Boschrexroths
RFID reader hardware, directly using this LightKone technology as basis of the imple-
mentation.

For efficiency and space reasons we will implement the above described CRDT se-
mantics of a array of register CRDTs (one for each RFID tag byte or possibly even bit)
with a more efficient implementation of the whole array but with the same semantics.
Therefore we probably can’t use a library of predefined CRDT data-types. We will work
together with researchers in the project to define a possible generic interface (Erlang be-
haviour) to a underlying complex CRDT implementation which can also be used in the
CRDT libraries of the project.

This makes it possible to implement the lightweight distributed KV store in a generic
manner so it could be used with CRDT libraries or application provided CRDTs. After
researching the available options in the project we have identified a possible candidate for
a KV store at partner INESC called Dante KV which while it has been developed inside
the LightKone project can currently not be part of the reference architecture because the
group disagrees if it can be mentioned in this version of the document.

Either on basis of the prior artefact or from scratch we will implement this lightweight
KV store with gossip anti-entropy as part of our use case, which will then join the other
technologies in the LightKone Reference Architecture.

3.4.5 Precision agriculture (Gluk)

(a) Context

The Self Sufficient precision agriculture management for irrigation use case will be ap-
plied for irrigation management in Subsurface Drop Irrigation method (citrus trees culti-
vation - but can be applied in every farming activity indoor or outdoor).

In the current approach, the water is pumped out from the well (or other water source)
and transmitted to the polymer tubes. The water usually is used to irrigate multiple farms.
However, as every farm has different characteristics (soil, area, etc.), the irrigation should
be adapted taking account these parameters. For example, some parcel of land may need
more water while other parcels need less water.

In order to avoid under-watering, the farmers usually irrigate more time than it is
necessary. This raises the issues of water waste, energy waste (electricity for the pump),
and drainage problems (since the same time many farmers irrigating and the water in the
underground water dump is not enough for everyone). In the current situation we don’t
have a clue which part of the farm is either over-watered or under-watered. We can see
only afterwards when the tree is not full of products or its leaves are yellow, etc. (again
empirical and observation methods). A non-proper irrigation could affect 25-30% of the
annual production.

LightKone D3.1(v2.0), January 15, 2019, Page 19

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

(b) System model and Requirements

Using the Self-Sufficient management system, the farm will be divided in clusters and
in every or middle of the tube will be installed a smart node containing the management
unit, sensors and actuators. In that way the farmer could divide into zones his farms and
when a zone is sufficient irrigated (retrieved value from the sensor) the actuators will stop
the water flow into specific parts of the tubes. The rest of the farm that still needs water
will continue being irrigated.

The core management ability must be completely autonomous (no need for PC or
cloud control) and as low-cost as possible (again, no need for PC or cloud connectivity,
which can be expensive), and for this it should run on the sensor array itself. The system
must be able to be installed by the farmer without any configuration capabilities from his
side (zero config). Additional management abilities can be added,which will cost extra,
but they are not essential for the correct operation of the system.

Requirements for the management software The basic management should be done
by the sensor array itself. Higher-level management goals can be added by external
systems, such as PCs or cloud tools, but such external systems cannot be guaranteed
to be connected to the sensor array. Also, we would like the system to be as low-cost
as possible: the most essential management should be done on the sensor array itself,
without any external costs. This gives modularity for the farmer: he pays only for what
he needs, and Internet connectivity is not needed for basic management abilities.

Requirements on the sensor array In order to achieve this, the requirements on the
sensor array are that there should be (1) basic computation ability in the sensor nodes,
and (2) basic communication ability between sensor nodes (for example, Wifi or Zigbee),
with normal reliability of these nodes as provided by off-the-shelf hardware.

Given these requirements, the software we develop using LightKone technology should
be able to perform reliable basic management (24/7) despite problems in the sensor array
(nodes going down, communication being unreliable).

Figure 3.4.4: Precision agriculture (Gluk)

LightKone D3.1(v2.0), January 15, 2019, Page 20

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

(c) Use-Case Implementation

We will use LightKone technology to provide reliable computation and communication
ability despite unreliable nodes and communication. As shown in Figure 3.4.4, we will
experiment a Proof of concept using LasponGRiSP and possibly Yggdrasil. Lasp pro-
vides a reliable replicated key/value store that runs with very little computational re-
sources, on top of a communication layer, Partisan, that ensures reliable communication
despite highly unreliable connectivity (using hybrid gossip). Basic connectivity provided
by Yggdrasil underneath Partisan. We will extend Lasp with a simple task model that
stores the management software in the Lasp store itself (which is possible because of
higher-order nature of Erlang), and performs periodic computations, storing results in
the Lasp store. GRiSP provides native Erlang functionality running with low power,
with basic processor power and memory and wireless connectivity. GRiSP also provides
Pmod sensor interfacing to provide the sensor and actuator abilities.

GRiSP nodes can be powered by solar batteries. 100% uptime is not required because
of the Lasp redundancy. Occasional problems in individual nodes are solvable by periodic
reboot of individual nodes. This will not hinder overall system operation because Lasp
replication and Partisan hybrid gossip are designed to survive such problems.

Management policy control is provided by a connection to the sensor array, either by
PC or cloud, which the farmer can do at any time. This connection does not need to be
continuous or reliable. The management will continue to work even if the connection is
not done for several days or more.

3.5 Edge/Fog System Models and Terminology
In this section we define Heavy, Light, and Hybrid edge, describing their properties and
mapping these categories to LightKone use-cases. This terminology overlaps and com-
plements SOTA definitions as we discuss in the next section, but it is more descriptive
to application-layer data patterns, being the focus of LightKone. We start by presenting
some definitions.

3.5.1 Taxonomy and Definitions

Figure 3.5.1: Edge devices spectrum.

We note the existence of a wide variety of edge devices with diverse characteristics
and capacities. A fine-grained classification as in Figure 3.5.1 is interesting to understand
the application in detail, but our observation across the use-cases leads to the follow-
ing three main categories considering available storage, computation, memory, network
bandwidth, power, etc.:

LightKone D3.1(v2.0), January 15, 2019, Page 21

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

• Fat node: an edge/fog node or device having considerable capacity. E.g, a com-
modity server.

• Medium node: an edge/fog node or device having moderate capacity. E.g., a
computing router or gateway.

• Thin node: an edge/fog node or device having constrained capacity. E.g., an IoT
device or mote.

On the other hand, we also note the importance of data-flow patterns across use-cases:

• Unidirectional dataflow: data mostly (an order of magnitude) flows in one direc-
tion through the network (e.g., pushing aggregated data from sensors to processing
machines).

• Bidirectional dataflow: data flows in two opposite directions in the network (e.g.,
pushing sensed data to processing machines, and processed data to actuators).

• Omnidirectional dataflow: data flows in multiple directions through the network,
i.e., in ad-hoc but possibly known manner (as in Gossip, Mesh, etc.).

Furthermore, the type and role of nodes in an edge network can change the system
properties, and thus we define the composition of an edge network as follows:

• Symmetric edge network: nodes mostly have the same role and capacities (e.g.,two
peers in IoT network)

• Asymmetric edge network: nodes mostly have different roles and maybe different
capacities (e.g., a client and server)

3.5.2 Heavy Edge
In heavy edge, the communication mostly occurs north-south, mainly between fat and
medium/thin devices. This can be seen as a distributed variant of classical server/client
service at the edge, and thus the network is asymmetric. Fat nodes often play a major
role in storage and computation to serve the requests issued by medium/thin nodes, and
hence, the dataflow is unidirectional (in aggregation use-cases) and bi-directional (in case
of control tasks and presence of “actuators”). In addition, fat nodes are often static in
terms of location and membership, which helps assuming some properties to implement
consensus protocols and transactions. Scality’s use-case on distributed highly available
indexing in storage is an example of heavy edge. In this use-case, clients delegate the
bulk of the work to fat edge nodes. In particular, AntidoteDB can be used as a heavy
edge database for such use-case.

3.5.3 Light Edge
In light edge, the communication is mostly lateral (south-west) between thin/medium
nodes. The model is often Peer-to-Peer (P2P) communication style where peers almost
have equal roles and rights; therefore, the network is basically symmetric and communi-
cation can be omnidirectional in an ad-hoc pattern style (usually built on Mesh networks,

LightKone D3.1(v2.0), January 15, 2019, Page 22

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

DAGs, etc). Furthermore, such networks are often implemented over hostile wireless
networks (WIFI, Zigbee, Bluetooth) and thus, there is high rate of churn in addition to
dynamic membership and locality (e.g, in mobile networks, robots, VANETs, etc.). This
suggests using data and communication abstractions that are more robust in face of such
challenges as in state-based CRDTs and hybrid-gossip protocols, respectively. For in-
stance, Stritzinger’s use-case on RFID-powered conveyors can experience transmission
problems due the nature of ad- hoc wireless protocols between conveyor stations and the
constrained devices (RFIDs) on products under fabrication, and allows for dataflow in all
directions (across different stations and products). This makes it more convenient to use a
gossip-based communication protocol (instead of a causal delivery middleware) together
with state-based CRDTs being tolerant to duplications.

3.5.4 Hybrid Edge

Hybrid edge comprises systems where there is no dominance of the heavy or light edge
and thus the communication includes north-south and east-west patterns. This refers to
use-cases that can cover different patterns and settings and thus exhibit both symmetric
and asymmetric networks, server/client as well as P2P communication, etc. We give two
concrete use-cases to exemplify the need for such category. The first is Guifi’s use-case
on community networks in which people can offer and run services on their own nodes
and publish to the network, and special nodes can monitor the network’s state or play the
role of data stores. The system can be coordinated through heavy edge, e.g., Antidote,
whereas there is no direct interaction between nodes (i.e., the traffic goes through the
heavy edge system). However, this model can be extended to have the nodes directly talk
to each other in a fully decentralized way, e.g., neighbors can publish services to each
other without passing through the heavy edge system (e.g., Antidote in this case). At the
same time, the monitoring service of Guifi will likely be semi-decentralized to reduce the
overhead of decision making and provide the necessary availability and resilience.

Another very common use-case is the IoT time-series based use-cases as Gluk’s pre-
cision irrigation control system. In this use-case, IoT devices (sensors and meters) are
used to detect the physical environmental state (e.g., humidity, salinity, temperature, illu-
mination, etc.); the corresponding data is aggregated and then pushed to more powerful
machines (e.g., cloud or heavy edge) to be processed. In the cases where the system gets
large, thin/medium nodes (sensors and gateways) can interact without the need for the
cloud center but possibly with intermediate upper fog layers. Thus local aggregation and
basic computations occur at lower layers (hence the light edge part) before delegating the
processing to more powerful machines at an upper layer (hence the heavy edge part).

3.6 Related Work

We now discuss how the LiRA relates to proposals that address the design of generic and
specific (mostly IoT) edge computing solutions.

LightKone D3.1(v2.0), January 15, 2019, Page 23

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

3.6.1 OpenFog RA
The OpenFog Reference Architecture (ORA) is a medium- to high-level view of system
architectures for fog nodes and networks. It is the result of a broad collaborative effort of
its independently-run open membership ecosystem of industry, technology and univer-
sity/research leaders. It was created to help business leaders, software developers, silicon
architects and system designers create and maintain the hardware, software and system
elements necessary for fog computing. It enables fog-cloud and fog-fog interfaces.

ORA can be considered a standard architecture for fog computing for two reasons.
First, it is a joint work of a broad consortium of of leading technology bodies from in-
dustry and academia with diverse expertise in the entire hardware and software stack of
cloud/fog/edge computing; and second, the architecture is broad enough to touch the ma-
jority of aspects and concerns in fog ecosystem considering multiple views, different per-
spectives, as well as general desired properties. (https://www.openfogconsortium.org/
wp-content/uploads/OpenFog-Reference-Architecture-Executive-Summary.pdf)

The LightKone Reference Architecture (LiRA) is complaint, but complementary, to
the OpenFog Reference Architecture (ORA). It is complaint as it often follows the same
terminology, general software architectural of a fog node, and targets the common themes
(a.k.a., ”pillars” in ORA) like, availability, autonomy, scalability, reliability, etc. How-
ever, it is complementary as LiRA emphasizes more the application level layer, specially
the distributed data management and communication techniques. This sometimes leads
to defining new terminology that is needed to classify application data and communica-
tion patterns that was not addressed in ORA (in the current version [?]). We explain the
relation to ORA in more details in the following.

(a) Distributed Data Management

ORA touches upon data management at a very high level through mainly emphasizing the
need to support various types of durable persistence, in-memory caches, SQL and NoSQL
databases, but other forms of durable storage should be considered, such as in-memory
databases , etc. In particular, LiRA does not support lateral data sharing across edge de-
vices of the same level as LiRA does. In ORA, data sharing is only done through a higher
level node in the hierarchy of the fog network. This is clearly described in the Visual Se-
curity and Surveillance Scenario use-case section. Furthermore, ORA does not tackle
with application-specific data requirements and invariants as LiRA provides data consis-
tency, convergence, invariants, etc. ORA only mentions some required features at the
application-level like data encoding, encryption, and support for structured/unstructured
data.

(b) Fog vs Edge Computing

The LightKone Grant Agreement (LKGA, written end of 2016) document predates ORA
(published in 2017) and therefore their terminology is slightly different. What ORA
calls Fog Computing, which spans from data-centric cloud to edge devices (or north to
south), is close to what LiRA calls “Heavy Edge”. What ORA calls Edge Computing,
focusing on what happens on and between the edge devices themselves (or east to west),
is close to “Light Edge” in LiRA. Such a divergence in terminology is not uncommon
in fast-moving fields. (For consistency with the other LightKone documents, we use

LightKone D3.1(v2.0), January 15, 2019, Page 24

https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Reference-Architecture-Executive-Summary.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog-Reference-Architecture-Executive-Summary.pdf

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

herein the terminology from LKGA, and occasionally refer to the OpenFog terminology
because it is in wide use.) Nevertheless, the notion of Heavy Edge and Light Edge are
broader, as defined in the previous section, considering the communication patterns, node
capacity, and dataflow of edge applications, which was not sufficiently addressed in ORA.
In addition, LiRA defines Hybrid Edge as a mixed model of both Heavy Edge and Light
Edge, in which communication and data flow occurs east to west and north to south,
thus allowing data sharing between nodes on the same level even if the upper layer is
unavailable.

(c) Pillars or themes

LiRA also shares with the ORA the importance of Fog/Edge functional and nonfunc-
tional properties, called Pillars or themes in ORA. LiRA however seeks availability and
autonomy from an application-layer data perspective, complementary to ORA. Specifi-
cally, ORA often demonstrates availability at the management and orchestration levels,
e.g., redundant nodes, MTTR, redundant configurations, etc., and autonomy as operating
when the cloud is unavailable. However, application layer requirements, like consistency,
can greatly prohibit availability even if the infrastructure is highly available.

3.6.2 EdgeX

EdgeX Foundry (https://www.edgexfoundry.org) is a Linux Foundation project that
hosts the development of the EdgeX software platform. EdgeX was announced in April
2017 as new Linux Foundation project supported by 50 companies. EdgeX is described as
a vendor-neutral common open framework for IoT edge computing, targeting specifically
industrial IoT. EdgeX was originally developed by DELL in Java before it was released
as an open source in a Linux Foundation project. In recent releases the original Java
code became more and more replaced by new implementations in Golang (https://github.
com/edgexfoundry/), making the EdgeX software more lightweight and therefore it can
become suitable to also run on devices with lower capacities.

Architecture. EdgeX is organized in a layered architecture of four layers named Export
Services, Supporting Services, Core Services and Device Services, along with two vertical
layers addressing security and system management. This architecture interfaces on the
south side (Device Services layer) to the IoT devices. Over this interface it communicates
with the physical IoT devices and receives data. On the north side (Export Services
layer) it interfaces to a Cloud system. The Cloud system collects, stores, aggregates and
analyzes the data. EdgeX therefore enables data to be sent over it from south to north
and the other way around, while within EdgeX, by the Support Services layer, some
processing (analytics) can be done, as to the services available in the support service
layer.

Data Storage. There is data storage in the EdgeX platform provided by the Core Ser-
vices layer. Data from IoT devices is stored by the Core Data component, a component
described as a a persistence repository for data collected from the south side objects.
Data about the EdgeX configuration is stored by the Metadata component, a component

LightKone D3.1(v2.0), January 15, 2019, Page 25

https://www.edgexfoundry.org
https://github.com/edgexfoundry/
https://github.com/edgexfoundry/

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

described as a repository service for metadata about the objects that are connected to
EdgeX.

Hardware. EdgeX targets to be deployable on heterogeneous hardware, from powerful
gateway servers to low-capacity devices such as the Raspberry Pi.

Services. EdgeX is microservice based, where each microservice is provisioned as a
Docker image. As such, EdgeX is very modular and flexible with regards to the composed
services, which can make it adaptive to specific conditions.

Deployment. The current stable EdgeX implementation seem to be target for being
deployed on a single device, but not on distributed hardware. Given that on the north
side EdgeX interfaces to a cloud system, it can be argued that this cloud system pro-
vides the needed resource elasticity to respond to different workload situations of edge
applications. However, the developments for the recent releases of EdgeX also include
efforts to target for a distributed deployment of microservices. It can also be seen as a
limitation that the elasticity of the services components of EdgeX itself are bound to the
computational resources of the hosting device.

Opportunities for LightKone. EdgeX is a recent platform (with public launch in April
2017, at the time of writing of this text this was not much more than 1.5 years ago).
News and events on EdgeX, frequent releases and industry support however indicate an
important effort behind EdgeX and the potential to become a key open source platform for
IoT applications. A demo of EdgeX at IoTSolutions in October 2018 showed the pursue
of EdgeX to become production ready. At current time, however, only prototypes seem
to be ready and there is not a yet any clear operational commercial cases running EdgeX
reported. LightKone persistent storage technology may contribute to the persistent data
storage services from the Core Services layer to become distributed. Such an extension
could complement EdgeX’s data storage services with additional properties. This could
fit into the releases of EdgeX planned for 2019, which aim to include a better support
for the distribution of service components to east and west (https://wiki.edgexfoundry.
org/display/FA/Fuji+Release). On the other hand, the roadmap of EdgeX needs to be
further understood. EdgeX seems to aim for reaching production readiness at the shortest
possible time frame and to fit to the audience of IoT applications in general. It can be
expected that the general open source release of EdgeX will integrate the capabilities
needed for general IoT application requirements, while for more specific and challenging
IoT applications, the extra support for using EdgeX will be given through commercial
value-added services of the partners of the EdgeX ecosystem.

3.6.3 ECC RA
The ECC Reference Architecture (called ECC RA in the following) is a model-driven
reference architecture that supports autonomy and collaboration of edge devices. It is
defined jointly by the Edge Computing Consortium (ECC) and the Alliance of Industrial
Internet (AII), where both consortia are spearheaded by major Chinese Internet compa-
nies and the Chinese government. The ECC RA 2.0 document was published in Nov.

LightKone D3.1(v2.0), January 15, 2019, Page 26

https://wiki.edgexfoundry.org/display/FA/Fuji+Release
https://wiki.edgexfoundry.org/display/FA/Fuji+Release

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

Figure 3.6.1: Azure IoT RA.

2017. ECC RA’s model support includes frameworks for real-time computing, limited-
resource computing, full-featured gateways, and full distributed system supports. ECC
defines edge computing as an open distributed platform running close to edge devices
(called “things”) and data sources, and subject to hostile environmental conditions. The
ECC architecture is layered, with edge computing nodes (ECN) at the bottom, then a
connectivity/computing/storage layer (CCF), then a service layer, and finally a set of so-
called smart services. Crosscutting concerns over all layers consist of security (including
identity and authentication), lifecycle management, and emergency response manage-
ment. The service layer (called “fabric” in the documentation) supports services to add
specific functionality. There is specific support for time series database mentioned in the
architecture, since computation with time series is a common application in edge com-
puting. Deployment targets a hierarchical infrastructure with edge devices, gateways,
and cloud services as the main layers, similar to the generic infrastructure of D2.1. The
programming model is based on the CCF, which provides operations for connectivity,
computing, and storage. All services can use this layer. An eventual integration of LiRA
components into ECC could focus on extensions to the CCF, or services that effectively
provide extensions to the CCF.

3.6.4 Azure IoT RA
Microsoft Azure IoT Reference Architecture (Azure IoT RA) provides the recommended
architecture and implementation technology choices for building Azure IoT solutions.
Azure IoT solutions are composed of Things (or devices), which generate data or events
that are sent to the cloud for storage and processing to generate Insights, which are used
to generate Actions.

According to the Azure IoT RA, presented in Figure 3.6.1, an IoT application consists
of the following subsystems:

1. devices that send data to and receive data from the cloud using different communi-
cation options. Optionally, an IoT Edge Device may execute some data processing
at the edge;

2. a cloud gateway service, or hub, to receive data and manage devices;

LightKone D3.1(v2.0), January 15, 2019, Page 27

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

3. stream processors that consume data and store it in the storage;

4. storage to store data received from devices or the results from stream processors.
The business processes consume the results from stream processors and from data
stored in the storage;

5. a user interface to visualize data and learning, and to simplify management.

For each of these subsystems, Azure IoT RA proposes multiple options, that can be used
depending on the requirements of the solution being proposed.

When compared to LiRA, Azure IoT RA misses the Light-edge layer. The reason for
this is that the Azure IoT RA focus only on IoT applications and it leverages highly on
Azure cloud infrastructure. The goals of the subsystems on Azure Things are similar to
the goals of the artefacts we have been developing for the LiRA thin layer: collect data
from devices, process them and propagate them to be sent to some other system - while
in Azure, it is assumed that data is always propagated to the cloud, in LiRa we assume
that data can be propagated to some Light-edge subsystem. On the cloud (Fat layer in
LiRA), we have been focusing mainly on storage and searching, while Azure RA focus
also on stream processing of received data. Given the large number of data processing
systems currently available, we assume that applications will rely on third party systems
to process received data, as discussed before.

3.6.5 Amazon Greengrass RA
AWS IoT Greengrass is an AWS solution for extending AWS to edge devices to allow
data to be processed at the edge. While using Greengrass, applications still use the cloud
for management, analytics, and durable storage. At the edge, devices execute predictions
based on machine learning models, synchronize data with the cloud and communicate
with other devices. At the cloud, AWS services for storage, analytics and data manage-
ment can be used. For each type of services, different AWS solutions are available and
can be used depending on the applications requirements.

The general architecture of Greengrass is similar to the one presented in the Azure
IoT RA. Thus, the discussion in the previous section regarding the comparison with LiRA
also applies to Greengrass. Still, some aspects are worth being highlighted. First, one
of the Greengrass goals is to support offline operation. The artefacts we have been de-
veloping in the context of LightKone also focus on this goal. Second, Greengrass allows
to use languages and programming models used in AWS cloud services (e.g. Lambda
functions). The LightKone project also tries to develop solutions that can be used in all
layers of the LightKone architecture, notably CRDTs. We are also specifying an unified
semantics for the computations that execute in the different artefacts being developed in
the context of LightKone.

LightKone D3.1(v2.0), January 15, 2019, Page 28

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

Table 3.2.1: Sumamry of the main LiRA artefacts.

Artefact Description Previous SOTA Contribution Read more
AntidoteDB A highly available geo-distributed

database
Geo-replicated
databases with dif-
ferent consistency
semantics, typi-
cally either weaker
(EC) or stronger
(Serializability
within shards)

Causal transactions +
CRDTs

D6.1

WebCure Client-side data replication for web ap-
plications using AntidoteDB as back-
endTODO: Annette

Read-only caches /
roll back on updates
on conflict

Simplified program-
ming model with
conflict resolution on
CRDTs

D6.2

Legion A framework for extending web applica-
tions to the edge, by running code in the
client devices that interact directly.

Systems that sup-
port disconnected
operation, but
no peer-to-peer
synchronization;
Mobile systems
that support peer-
to-peer interaction,
but that are not
designed to support
web applications.

Simple programming
model for extend-
ing web application
with peer-to-peer
synchronization.Big
delta CRDTs.Model
for interacting with
cloud services.Security
mechanisms.

D5.1

EdgeAnt A consistent, mutable cache at the edge.
Data is backed up in Antidote. EdgeAnt
supports the same API as Antidote, and
guarantees the same TCC+ consistency.
A cache can transparently disconnect and
reconnect to any data centre. Ongoing
work: (i) A client has the option to place
any individual computation, either at the
edge or in a data centre; both guarantee
the same consistent view of data. (ii) Co-
located EdgeAnt clients can collaborate
in a group, even disconnected from the
infrastructure, and can migrate between
groups.

Edge caching for
immutable data; or
non-AP ”sticky” or
ad-hoc caches with
ill-defined guaran-
tees

Consistent, mutable AP
cache. Uniform (DC
to edge) AP guarantees
Client can migrate
Place computation
@edge or @centre P2P
group communication
Client can change
groups

D6.2

Yggdrasil Framework for designing distributed pro-
tocols for ad-hoc networking.

Frameworks for
developing dis-
tributed protocol,
but no specific
one for wireless
ad-hoc network-
ing.Multiple pro-
tocols for ad-hoc
networking.

Simple programming
model for defining new
protocol, hiding the
complexity of config-
uring wireless radios
and exchanging mes-
sages among multiple
communication.parties.

D5.1

Proteus A geo-distributed framework for analyt-
ics computations on federated data stores.
Proteus maintains materialized views and
performs stateful data-flow computation.
Admins place computation and data ac-
cording to SLA considerations.

Apache
Spark,Distributed
search for federated
clouds, Federated
query process-
ing on linked
data,Lasp??

Bidirectional data-flow
computations using
materialized views
stored as CRDTs.
Modular distributed
architecture that en-
ables flexible data and
computation placement
in geo-distributed
systems.

D6.2

Grisp A Unikernel approach running the Erlang
VM directly on smaller hardware without
intervening operating system level. There
is a software stack that allows for mixed
critical systems with hard and soft real-
time parts. A evaluation and development
board for this was developed outside the
project and provided to partners.

Running Erlang on
Embedded Linux
like operating
systems. Soft
real-time only.

Erlang on smaller IoT
devices which wouldn’t
be able to run Linux.
Erlang as part of mixed
critical systems. Prepa-
ration for allowing hard
real-time Erlang pro-
cesses.

D5: Chap-
ter 3.4

LaspOnGrisp Reliable key/value store running on net-
work of Grisp boards, allowing applica-
tions to run directly on the sensor boards.
Reliable data storage based on CRDTs;
reliable communication based on hybrid
gossip (Partisan).

SOTA edge appli-
cations do not run
on sensor networks,
but on gateways
that manage these
networks.

Resilient data storage
and resilient communi-
cation directly on sen-
sor networks.

D4.2

LightKone D3.1(v2.0), January 15, 2019, Page 29

CHAPTER 3. LIGHTKONE REFERENCE ARCHITECTURE (LIRA)

LightKone D3.1(v2.0), January 15, 2019, Page 30

Chapter 4

Plan and Progress

The purpose of this chapter is to provide the required data and communication abstrac-
tions that constitute the building blocks of the edge computing runtime. The main signifi-
cant data abstraction is based on the idea of Conflict-free Replicated DataTypes (CRDTs) [84]
previously developed in SyncFree FP7 project1, a predecessor of LightKone. Since they
are proven to achieve high availability and convergence in loosely connected network,
we adopted the CRDT approach for the edge as well, and we tried to improve and extend
them in many directions to fill the gaps on the edge. We have also focused on adapt-
ing the needed communication abstractions for this approach by adopting hybrid-gossip
protocols (like Partisan) and reliable causal broadcast (both described in later sections).
As stability is the major challenge at the edge, we opted to dedicate a separate section
in which we introduce several techniques and protocols to boost scalability. Although
these approaches can fit in other sections, we follow this structure to show the emphasis
on scalability.

4.1 Plan and Milestones

We first present the plan we followed during the first year to develop the initial data and
communication abstractions of generic edge runtime, and the prospective plans for the
rest of the project. The plan is often consistent with that presented in the original proposal
(unless explicitly mentioned otherwise). We also took into consideration the support for
generic edge computing runtimes considering the LightKone use cases and pushing the
envelope further to explore and understand the potential of LightKone technology beyond
our use cases. We believe that is important to create more impact and innovate.

4.1.1 Plan followed in Year 1 (Y1)
In the first year, we aimed at providing the initial data and communication abstractions
and protocols to build a generic edge computing runtime. These abstraction and proto-
cols will be eventually packaged as software components that can be used in edge runtime
within LightKone, as in the other work packages, and importantly outside LightKone. As
explained in the previous chapter, the SOTA of edge/fog computing did not sufficiently
address distributed data management in a way to allow sharing data efficiently across fog

1https://pages.lip6.fr/syncfree/

31

CHAPTER 4. PLAN AND PROGRESS

layers and within the same layer. In LightKone, we decided to build on the CRDTs [84]
invention the academic partners developed in the past EU FP7 project Syncfree [34].
CRDTs have proven to improve the availability of geo-replicated systems through auto-
matic conflict resolution in relaxed consistency model, but they were not feasible to edge
networks with constrained resources, big number of edge nodes, and hostile network.
In WP3, we planned to fill this gap by mainly extending CRDTs to edge/fog, through
addressing the application data layer and communication layer. We started by address-
ing the general edge-tailored features like supporting more datatypes and improving their
efficiency. Meanwhile, the use case semantics started to appear and we continued ad-
dressing edge application layer semantics like convergence, causal consistency, strong
eventual consistency. We also started extending these CRDTs to support edge computing
applications through improving their efficiency (reduce meta-data storage and dissemi-
nation), scalability (using partial replication), and resilience. This targeted the datatypes
themselves as well as their underlying communication layer like causal broadcast and
group membership protocol. Finally, we started preparing the security analysis for the
use case and suggesting off-the-shelf.

4.1.2 Plan for the first half of Year 2

In the following six months of Year 2, we aim to continue our work through addressing
the application semantics already started in Y1. In particular, we aim to continue im-
proving the efficiency of the different CRDT models through optimizing the datatypes,
mainly the pure operation-based and delta-state CRDTs, as well as their underlying com-
munication layer. At the communication layer, study the impact of the causal broadcast
on concurrent applications and identify potential implementation pitfalls. We will also
evaluate the performance of the state exchange in the delta-data model and assess the
performance of Partisan library. We also aim to continue the work started on partial
replication as described later in this chapter and to provide a security analysis of the use
case threat models.

4.1.3 Plan for the second half of the project

Considering the comments of the reviewers of the European Commission, the plan for
the second half of the project is subject to an update to design the Reference Architecture
(LiRA) that governs the entire project. This work is part of WP3, and is presented in this
deliverable D3.1. Our plan by the end of Year 3 is to improve performance and resilience
of the developed protocols. Specifically, we aim to increase the scalability of CRDTs (to
the number of edge nodes) to one order of magnitude. We will also address the issue
of dynamic networks and churn. Finally, we will explore the potential of Hybrid edge
applications defined in the previous chapter building on the outcome of WP5 and WP6
on Light and Heavy edge. At the end of the project, we will delivered packaged libraries
and protocols that can be used beyond LightKone. We provide a more detailed plan in
the next deliverable D3.2.

LightKone D3.1(v2.0), January 15, 2019, Page 32

CHAPTER 4. PLAN AND PROGRESS

4.2 Data Abstractions at the Edge
LightKone adopts the use of Conflict-free Replicated Data Types (CRDTs) to improve
the availabilty and reslience of edge computing systems. Although proven successful
in geo-replication, the current state of the art of CRDTs cannot answer the needs of the
edge for several reasons attributed to the hostile edge networks and constrained devices,
e.g., efficiency, scalability, heteroginity, etc. In this report, we focus on efficiency, and
we aim at further progress in future reports. In particular, we present optimizations for
several variants of state-based and op-based CRDT models through reducing the meta-
data shipped over the network and stored in devices. Some of these contribtions are
practical, and involved hands-on optimizations for CRDT implementations embedded
in LightKone arifacts, as in Antidote DB (presented in detail in WP6). In addition, we
tried to fill the gap of missing datatype sepcficiations by providing a portfolio for various
variants of counters, registers, sets, maps; and support important and challenging opera-
tions as “reset”. Since CRDTs are key in this project, we opt to start with a convenient
comprehensive background for the convenience of the reader.

4.2.1 CRDTs: state-of-the-art and beyond
Conflict-free Replicated Data Types (CRDTs) are data abstraction tools that can be par-
ticularly helpful in edge computing scenarios. In the following summary we highlight
some of their properties and key research findings. A more complete coverage of the
state-of-the-art, as of 2018, will be available in an upcoming book chapter [84]. Details
on the particular improvements of CRDT models, both state-based and operation-based,
are covered in Sections 4.2.2 and 4.2.3.

(a) Overview

Internet-scale distributed systems often replicate data at multiple geographic locations to
provide low latency and high availability, despite outages and network failures. To this
end, these systems must accept updates at any replica, and propagate these updates asyn-
chronously to the other replicas. This approach allows replicas to temporarily diverge
and requires a mechanism for merging concurrent updates into a common state. CRDTs
provide a principled approach to address this problem.

As any abstract data type, a CRDT implements some given functionality and exposes
a well defined interface. Applications interact with the CRDT only through this interface.
As CRDTs are specially designed to be replicated and to allow uncoordinated updates, a
key aspect of a CRDT is its semantics in the presence of concurrency. The concurrency
semantics defines what is the behavior of the object in the presence of concurrent updates,
defining the state of the object for any given set of received updates.

(b) Concurrency semantics

The operations defined in a data type may intrinsically commute or not. Consider for
instance a Counter data type, a shared integer that supports increment and decrement
operations. As these operations commute (i.e., executing them in any order yields the
same result), the Counter data type naturally converges towards the expected result. In
this case, it is natural that the state of a CRDT object reflects all executed operations.

LightKone D3.1(v2.0), January 15, 2019, Page 33

CHAPTER 4. PLAN AND PROGRESS

Unfortunately, for most data types, this is not the case and several concurrency se-
mantics are reasonable, with different semantics being suitable for different applications.
For instance, consider a shared memory cell supporting the assignment operation. If
the initial value is 0, the correct outcome for concurrently assigning 1 and 2 is not well
defined.

When defining the concurrency semantics, an important concept that is often used is
that of the happens-before relation [61]. In a distributed system, an event e1 happened-
before an event e2, e1 ≺ e2, iff: (i) e1 occurred before e2 in the same process; or (ii) e1
is the event of sending message m, and e2 is the event of receiving that message; or
(iii) there exists an event e such that e1 ≺ e and e≺ e2. When applied to CRDTs, we can
say that an update u1 happened-before an update u2 iff the effects of u1 had been applied
in the replica where u2 was executed initially.

As an example, if an event was “Alice reserved the meeting room”, it is relevant to
know if that was known when “Bob reserved the meeting room” to determine if Alice
should be given priority or if two users concurrently tried to reserve the same room.

For instance, let us use happened-before to define the semantics of the add-wins set
(also known as observed-remove set, OR-set [92]). Intuitively, in the add-wins semantics,
in the presence of two operations that do not commute, a concurrent add and remove of
the same element, the add wins leading to a state where the element belongs to the set.
More formally, the set interface has two update operations: (i) add(e), for adding element
e to the set; and (ii) rmv(e), for removing element e from the set. Given a set of update
operations O that are related by the happens-before partial order ≺, the state of the set is
defined as: {e | add(e) ∈ O∧@rmv(e) ∈ O ·add(e)≺ rmv(e)}.

Replica A •
{a}

rmv(a)
// •
{}

add(a)
// •
{a} //

sync

%%

•
{a}

Replica B •
{a}

rmv(a)// •
{}

//
sync

99

•
{a}

Time //

Figure 4.2.1: Run with an add-wins set.

Figure 4.2.1 shows a run where an add-wins set is replicated in two replicas, with
initial state {a}. In this example, in replica A, a is first removed and later added again
to the set. In replica B, a is removed from the set. After receiving the updates from the
other replica, both replicas end up with element a in the set. The reason for this is that
there is no rmv(a) that happened after the add(a) executed in replica A.

An alternative semantics based on the happens-before relation is the remove-wins.
Intuitively, in the remove-wins semantics, in the presence of a concurrent add and remove
of the same element, the remove wins leading to a state where the element is not in the
set. More formally, given a set of update operations O, the state of the set is defined
as: {e | add(e) ∈ O∧∀rmv(e) ∈ O · rmv(e) ≺ add(e)}. In the previous example, after
receiving the updates from the other replica, the state of both replicas would be the empty
set, because there is no add(a) that happened after the rmv(a) in replica B.

Another relation that can be useful for defining the concurrency semantics is that of

LightKone D3.1(v2.0), January 15, 2019, Page 34

CHAPTER 4. PLAN AND PROGRESS

a total order among updates and, particularly, a total order that approximates wall-clock
time. In distributed systems, it is common to maintain nodes with their physical clocks
loosely synchronized. When combining the clock time with a site identifier, we have
unique timestamps that are totally ordered. Due to the clock skew among multiple nodes,
although these timestamps approximate an ideal global physical time, they do not neces-
sarily respect the happens-before relation. This can be achieved by combining physical
and logical clocks, as shown by Hybrid Logical Clocks [58], or by only arbitrating a
wall-clock total order for the events that are concurrent under causality [110].

This relation allows to define the last-writer-wins semantics, where the value written
by the last writer wins over the values written previously, according to the defined total
order. More formally, with the set O of operations now totally ordered by <, the state
of a last-writer-wins set would be defined as: {e | add(e) ∈ O∧∀rmv(e) ∈ O · rmv(e) <
add(e)}. Returning to our previous example, the state of the replicas after the synchro-
nization would include a if, according the total order defined among the operations, the
rmv(a) of replica B is smaller than the add(a) of replica A. Otherwise, the state would
be the empty set.

(c) Key research findings

Preservation of sequential semantics When modelling an abstract data type that has
an established semantics under sequential execution, CRDTs should preserve that se-
mantics. For instance, CRDT sets should ensure that if the last operation in a sequence
of operations to a set added a given element, then a query operation immediately after
that one will show the element to be present on the set. Conversely, if the last operation
removed an element, then a subsequent query should not show its presence.

Sequential execution can occur even in distributed settings if synchronization is fre-
quent. An instance can be updated in replica A, merged into another replica B and up-
dated there, and merged back into replica A before A tries to update it again. In this case
we have a sequential execution, even though updates have been executed in different
replicas.

Historically, not all CRDT designs have met this property. The two-phase set CRDT
(2PSet), does not allow re-adding an element that was removed, and thus it breaks the
common sequential semantics. Later CRDT set designs, such as add-wins and remove-
wins sets, do preserve the original sequential semantics while providing different arbitra-
tion orders to concurrent operations.

Extended behaviour under concurrency Some CRDT designs handle concurrent op-
erations by arbitrating a given sequential ordering to accommodate concurrent execution.
For example, the state of a last-writer-wins set replica shown by its interface can be ex-
plained by a a sequential execution of the operations according to the LWW total order
used. When operations commute, such as in G-Counters and PN-Counters, there might
even be several sequential executions that explain a given state.

Not all CRDTs need or can be explained by sequential executions. The add-wins set
is an example of a CRDT where there might be no sequential execution of operations to
explain the state observed, as Figure 4.2.2 shows. In this example, the state of the set after
all updates propagate to all replicas includes a and b, but in any sequential extension of

LightKone D3.1(v2.0), January 15, 2019, Page 35

CHAPTER 4. PLAN AND PROGRESS

Replica A •
{}

add(a)
// •
{a}

rmv(b)
// •
{a} //

sync

%%

•
{a,b}

Replica B •
{}

add(b)// •
{b}

rmv(a)// •
{b}

//
sync

99

•
{a,b}

Figure 4.2.2: Add-wins set run showing that there might be no sequential execution of
operations that explains CRDTs behavior.

the causal order a remove operation would always be the last operation, and consequently
the removed element could not belong to the set.

Some other CRDTs can exhibit states that are only attained when concurrency does
occur. An example is the multi-value register, a register that supports a simple write
and read interface. If used sequentially, sequential semantics is preserved, and a read
will show the outcome of the most recent write in the sequence. However if two or
more values are written concurrently, the subsequent read will show all those values (as
the multi-value name implies), and there is no sequential execution that can explain this
result. We also note that a follow-up write can overwrite both a single value and multiple
values.

Guaranties and limitations An important property of CRDTs is that an operation can
always be accepted at any given replica and updates are propagated asynchronously to
other replicas. In the CAP theorem framework [23, 54], the CRDT conflict-free approach
favors availability over consistency when facing communication disruptions. This leads
to resilience to network failure and disconnection, since no prior coordination with other
replicas is necessary before accepting an operation. Furthermore, operations can be ac-
cepted with minimal user perceived latency since they only require local durability. By
eschewing global coordination, replicas evolve independently and reads will not reflect
operations accepted in remote replicas that have not yet been propagated to the local
replica.

In the absence of global coordination, session guaranties [100] specify what the user
applications can expect from their interaction with the system’s interface. Both state
based CRDTs, and operation based CRDTs when supported by reliable causal delivery,
provide per-object causal consistency. Thus, in the context of a given replicated object,
the traditional session guaranties are met. CRDT based systems that lack transactional
support can enforce system-wide causal consistency, by integrating multiple objects in a
single map/directory object [8]. Another alternative is to use mergeable transactions to
read from a causally-consistent database snapshot and to provide write atomicity [83].

Some operations cannot be expressed in a conflict free framework and will require
global agreement. As an example, in an auction system, bids can be collected under
causal consistency, and a new bid will only have to increase the offer with respect to
bids that are known to causally precede it. However, closing the auction and selecting a
single winning bid will require global agreement. It is possible to design a system that
integrates operations with different coordination requirements and only resorts to global
agreement when necessary [64, 96].

Some global invariants, that are usually enforced with global coordination, can be

LightKone D3.1(v2.0), January 15, 2019, Page 36

CHAPTER 4. PLAN AND PROGRESS

enforced in a conflict free manner by using escrow techniques [80] that split the available
resources by the different replicas. For instance, the Bounded Counter CRDT [15] defines
a counter that never goes negative, by assigning to each replica a number of allowed
decrements under the condition that the sum of all allowed decrements do not exceed
the value of the counter. While its assigned decrements are not exhausted, replicas can
accept decrements without coordinating with other replicas. After a replica exhaust its
allowed decrements, a new decrement will either fail or require synchronizing with some
replica that still can decrement. This technique uses point to point coordination, and can
be generalized to enforce other system wide invariants [14]

(d) CRDT models

There are two main CRDT models: state-based and operation-based (op-based). In op-
based designs, the execution of an operation is done in two phases: prepare and effect.
The former is performed only on the local replica and looks at the operation and current
state to produce a message that aims to represent the operation, which is then shipped to
all replicas. Once received, the representation of the operation is applied remotely using
effect. On the other hand, in a state-based design an operation is only executed on the
local replica state. A replica periodically propagates its local changes to other replicas
through shipping its entire state. A received state is incorporated with the local state via
a merge function that deterministically reconciles both states. To maintain convergence,
merge is defined as a join: a least upper bound over a join-semilattice.

The two models are believed to be useful in both edge applications on heavy edge and
light edge. Op-based CRDTs allow for simpler implementations, concise replica state,
and smaller messages, but they assume a message dissemination layer that guarantees
reliable exactly-once causal broadcast. This makes op-based CRDTs more suitable to
heavy edge scenarios where the system model is less dynamic. On the other hand, state-
based CRDTs are more robust to network changes and can be more suitable to light edge
networks. The price is however in the communication overhead of shipping the entire
state, which can get very large in size.

The following sections discuss optimizations for both models.

4.2.2 Towards operation-based CRDTs at the edge
In this section, we present our contributions to optimize the Pure op-based CRDT model
that addresses the efficiency challenges in the classical op-based model. In particular, this
model reduces redundant meta-data dissemination and storage. The main contribution
to this model, that was introduced in [16], is presenting a portfolio of more than ten
datatypes compare to three in the past. In addition, the new datatypes support the “reset”
operation that required substantial modification to the original framework. Finally, we
have provided new specifications and practical efficiency optimizations to the classical
op-based CRDTs already implemented in Antidote DB.

(a) Pure op-based CRDTs

In op-based CRDTs, the execution of an operation is done in two phases: prepare and
effect. The former is performed only on the local replica and looks at the operation and
current state to produce a message that aims to represent the operation, which is then

LightKone D3.1(v2.0), January 15, 2019, Page 37

CHAPTER 4. PLAN AND PROGRESS

shipped to all replicas. Once received, the representation of the operation is applied
remotely using effect. Different replicas are guaranteed to converge as long as messages
are disseminated through a reliable causal broadcast messaging middleware, and effect is
designed to be commutative for concurrent operations.

In the standard approach, a prepare not only builds messages that duplicate the in-
formation already present in the middleware (even if it is not currently made available),
but causality meta-data is often incorporated in the object state, hence, reusing design
choices similar to those used in state-based approaches. Such designs impose larger state
size and do not fully exploit causal delivery information. This freedom in current op-
based designs is against the spirit of ‘sending operations’, and leads to confusion with
the state-based approach. Indeed, in the standard op-based framework, a prepare can
return the full state, and an effect can do a full state-merge (which mimics a state-based
CRDT). This means that basically any CRDT could be described as op-based, even if it
is for all purposes a state-based one, where no operation propagation is really happen-
ing. We believe that the above weakness and confusion can be avoided if the causality
meta-data can be provided by the messaging middleware. Causal broadcast implementa-
tions already possess that information internally, but it is not exposed to clients. In the
pure operation-based CRDT approach, initially introduced in [16], we propose and ex-
ploit such an extended API to achieve both simplicity and efficiency in defining op-based
CRDTs.

In the Pure Op-Based CRDT framework, prepare cannot inspect the state, being lim-
ited to returning the operation (including potential parameters). The entire logic of exe-
cuting the operation in each replica is delegated to effect, which is also made generic (i.e.,
not data type dependent). For pure op-based CRDTs, we propose that the object state is
a partially ordered log of operations – a POLog. Causality information is provided by an
extended messaging API: Tagged Causal Stable Broadcast (TCSB). We use this infor-
mation to preserve convergence and also design compact and efficient CRDTs through
a semantically based POLog compaction framework. The idea is to prune the POLog
using a datatype-specific obsolescence relation, defined over timestamp-operation pairs.
An example of obsolete operation is an add followed by another add of the same item in
a set.

Following this line of research, we have recently obtained the following results that
are summarized in the technical report [17], under submission to a journal paper:

• Improved the pure op-based framework, namely how obsolescence/redundancy is
described, to support the reset operation in all types. This required revisiting the
entire framework introduced previously in [16].

• Introduced a portfolio of several CRDTs (including variants of counters, sets, reg-
isters, maps, etc.) based on the pure op-based framework, and that can be used in
several edge applications.

(b) Optimized classical op-based CRDTs

The pure op-based CRDTs, though advanced, they incur additional complexity compared
to the classical ones. The tradeoff is however extra meta-data storage and dissemination
as classical CRDTs often retain meta-data per operation forever. Antidote DB, a geo-
replicated edge database that provides transactional causal consistency for CRDT [35]

LightKone D3.1(v2.0), January 15, 2019, Page 38

CHAPTER 4. PLAN AND PROGRESS

(see deliverabl D6.1 or D6.2), opts for classical op-based CRDTs and only implements
few of them. Our contribution was to improve and optimize these implementations as
well as to implement new ones to enrich the Antidote DB CRDTs library.

In particular, for the existing data types, such as PN-Counter, OR-Set (AW-Set) and
RW-Set, our improvements were in terms of minimizing the size of the downstream cal-
culated to be broadcast to the other replicas and by that reduce the transmission overhead.
In addition, we minimized the complexity of downstream messages/operations through
general refactoring of the code. Finally, we also added some new op-based data types to
Antidote’s CRDTs library:

• Flags: We added an EW-Flag (Enable Wins Flag) and a DW-Flag (Disable Wins
Flag) that store a Boolean value (true or false). Antidote has two variants for flags,
which differ in how concurrent updates are resolved (i.e., which operation wins
(enable or disable) in case those two were concurrent).

• Maps: Another data type that we implemented is a map called an RR-Map, which
stands for Remove Resets Map, that offers a new design of a map data type than
the already implemented G-Map (Grow only Map) and AW-Map (Add Wins Map).
This map is implemented as an optimization on the size of downstream operations
(both update and remove) as well as the size of the state stored locally at each
replica when compared to the AW-Map. Both implementations were kept though
as the semantics between the two designs differ a bit.

• reset operation feature: we implemented reset operation (where missing) in the
data types because it is a nice feature and as well as it is required for data types that
could be embedded in the RR-Map.

• Resettable counters: Implementing this reset feature was not possible for the exist-
ing op-based counter CRDT design as the effect of individual operations disappear—
contrary to other datatypes in which operations retain tags. We implemented a
naive resettable counter data type, i.e., Fat-Counter, as a map from individual op-
erations to incremented value. To reduce the high storage overhead, we introduced
an efficient version called Compact Resettable counter [107] which allows garbage
collecting non-concurrent operations using the notion of causal stability explained
earlier.

For all the data types, both existing and newly implemented, we added unit tests and
property-based tests and implemented a feature of compressing operations before being
disseminated to replicas.

4.2.3 State-based CRDTs at the edge
The alternative state-based CRDT model is also interesting for light edge computing
where netowrks are hostile and dynamic. This is referred to the state (S) design that
froms a join-semilattice where joining states is inflation: s′ ∈ S is an inflation of s ∈ S if
sv s′; and therefore, the needed (partial order) meta-data is encapsulated in the datatype
state regardless of the middleware. Consequently, states can be merged in an ad-hoc
way and converge despite duplications, e.g., due to retransmission likely to occur in such
networks. In this section, we convey our work on synchronization optimization of delta

LightKone D3.1(v2.0), January 15, 2019, Page 39

CHAPTER 4. PLAN AND PROGRESS

CRDTs: an efficient variant of state-based CRDTs introduced previously in [7]. Our
contribution was to reduce the redundant dissemination as well as the overhead of state
transfer when nodes (replicas) are intermittently synchronizing or new replicas join the
edge newtwork. We first overview delta CRDTs.

(a) Delta CRDTs

In state-based CRDTs, the entire state is periodically propogated and merged with other
replicas. As the local state grows, this approach becomes impractical. Delta state-based
CRDTs only propagate the most recent modifications incurred in its local state. This is
achieved by building delta-mutators that are variants of mutators (update operations) that
return smaller state, called delta δ , representing the recent state change. When the delta
is merged with the local state, the same inflation is produced as if the original mutator
was applied. In this model, the δ s resulting from mutators are added to a δ -buffer, in
order to be propagated to neighbor replicas in the next synchronization step. When a
δ -group (a batch of deltas) is received from a neighbor, it is also added to the buffer for
further propagation.

(b) Efficient Synchronization of State-based CRDTs

Problem. The above buffering and dissemination scheme can incur redundant propoa-
gation of deltas either through back propagation (sending a delta to its source) or tran-
sitive propagation (sending deltas as part of a delta-group to those who have already
seen them). Consequently, each replica to keep track of which δ -group in the δ -buffer
has been effectively received by its neighbors. When a δ -group is acknowledged by all
neighbors, it is removed from the buffer. If a neighbor stops acknowledging (e.g., due
to a network partition), the buffer will grow indefinitely, which might force garbage-
collection of its content. Hence, the metadata required for delta-based synchronization
is not available (this also occurs in systems with dynamic networks, where the set of
neighbors is constantly changing). A naive solution proposed in current delta-based syn-
chronization [7] is to perform bidirectional full state transmission. This brings us back to
square one, i.e., to the state-based model.

Proposed solution. We introduced two methods to avoid bidirectional full state trans-
mission: state-driven and digest-driven. Taking a Grow-only set (GSet) example, Fig-
ure 4.2.3 sketches the synchronization algorithms. In state-driven approach (Figure 4.2.3a),
B starts by sending its local state to A, and given this state, A is able to compute a ∆B
that reflects the updates missed by B. Convergence is achieved after two messages (if no
updates where performed in the meantime), since A can merge the state received from
B into its local state. In the digest-driven approach (Figure 4.2.3b), instead of sending
its local state, B starts by sending to A a digest of its local state hB (smaller than the
local state), that still allows A to compute ∆B. Upon the receipt of hB, replica A sends
the computed ∆B and a digest hA of its local state, so that B can also compute ∆A. As a
consequence of starting the synchronization with a digest, three messages are necessary
to achieve convergence.

LightKone D3.1(v2.0), January 15, 2019, Page 40

CHAPTER 4. PLAN AND PROGRESS

A {a,b,c} {a,b,c,d}
∆B
##

B {a,d} •
{a,d}

BB

{a,b,c,d}

(a) State-driven synchronization

{a,b,c} {a,b,c}
∆B,hA
""

{a,b,c,d}

{a,d} •
hB

DD

{a,b,c,d}
∆A

;;

(b) Digest-driven synchronization

Figure 4.2.3: Synchronization of a grow-only set with two replicas A,B.

Join Decomposition. For the success of the above synchronization methods, an effi-
cient technique is required to compute the difference between two states in an optimal
way (to avoid redundancy). To this end, we introduced join-decomposition that can be
informaly defined as follows: a set s′ that belongs to the power set of a join semilattice
state s is a join-decomposition iff the join of all elements in s′ is necessary to produce
s and all elements are join-irreducible (cannot be decomposed further). Said differently,
it is the set of primitive undecomposable elements of a set that are necessary and suffi-
cient to build a state. As an example, for a semillatice s = {a,b,c}, {{a},{b},{c}} is a
join-decomposition, whereas {{b},{c}} and {{a,b},{c}} are not.

The concept of join-decomposition allow us to improve the synchronization of state-
based CRDTs in two distinct situations: when a replica has the necessary metadata for
δ -based synchronization, we remove redundant state in received δ -groups; when this
metadata is not available, replicas can employ state-driven or digest-driven synchroniza-
tion, avoiding bidirectional full state transmission. A detailed description of this work
can be found in MSc thesis [44].

4.3 Communication support for data at the Edge

The data management techniques and datatypes discussed in the previous two sections
assume the presence of underlying dissemination layer with properties that support gen-
eral cloud and edge applications (e.g., causality), as well as networks (e.g, scalability
and dynamicity). In particular, the work on advanced Pure op-based CRDTs assume the
presence of a causal middleware that is efficient and supports “causal stability” which
is novel to SOTA causal middlewares [17, 18, 88]. We started developing a middleware
that supports these features as we present next. On the other hand, all the dissemina-
tion protocols used in the previous sections are implemented using Distributed Erlang
that has known to limits to parallelism and no support for cluster topologies (but full
mesh). We developed a communication library called Partisan in a previous project (FP7
Syncfree [34]) that implements two group membership protocols, i.e., Plumtree [86] and
HyParView [63], that are efficient hybrid gossip protocols. In LightKone, we developed
Partisan further to support edge networks and edge applications. In particular, we sup-
ported dynamic network topologies, many application patterns, multiple channel sending,
etc. Even on a lower layer, are working with Ericsson to develop the Distributed Erlang
library to support mesh networks with routing instead of relying on full connected mesh
doomed unscalable (the number of connections in the cluster grows N2 with the number
of nodes). We present the progress of the mentioned contributions in the following, and

LightKone D3.1(v2.0), January 15, 2019, Page 41

CHAPTER 4. PLAN AND PROGRESS

we mention the steps to be addressed in future milestones.

4.3.1 Tagged Causal Stable Broadcast (TCSB)

Problem. As stated in the previous section, the pure op-based framework relies on
two important features in the underlying dissemination layer. The first is causal deliv-
ery in which sent messages must only be delivered in respect with the causality relation
(a.k.a., “happened-before” relation [61]) between those messages. Although state of the
art causal delivery protocols [18, 88] (also known as group multicast protocols) provide
this functionality, additional meta-data are needed (in the CRDTs) to express the con-
currency between messages which is not provided by the aforementioned protocols. This
redundant meta-data leads to an overhead on the dissemination of messages and therefore
on the performance and scalability of the system. The second feature is “causal stability”
used to discard timestamp information of operations: a timestamp t, and corresponding
message, is causally stable at node i when all messages subsequently delivered at i will
have timestamps t ′ > t. Stability can be locally detected by tracking in each node the last
timestamps received from each other node. The notion is novel and has been introduced
in [16], but no details has been mentioned about how to implement this feature in a causal
middleware.

Solution. To address the above issues, we developed novel causal delivery middleware
called Tagged Causal Stable Broadcast (TCSB). A common implementation strategy for
a reliable causal broadcast service is to assign a vector clock to each message broadcast,
and use the causality information in the vector clock to decide at each destination when
a message can be delivered. However, there is no ordering provided by RCB for con-
current messages, even though the middleware can detect when messages are concurrent.
Our solution of solving this problem with no duplication of effort and meta-data, is by
exposing this knowledge itself to the application. When the application is provided by
the causality relation between operations, correct semantics are preserved with less effort
and redundancy.

Moreover, TCSB provides a “causal stability” oracle that informs on stable messages,
those with no further concurrent deliveries. The causal stability information is stored in a
matrix-like data structure of size nxn and the stable threshold calculated from this matrix
reduced to a vector of size n, n being the number of participants in the group. When this
threshold of causal stability (we call it stable vector) is calculated, it means everything
below this vector is stable. This mechanism allowed garbage collection and compaction
of partially-ordered logs.

We have an implementation of the TCSB, written in Erlang that we mention in the
Software chapter 5.

Feasibility and future plan. TCSB can be used for any datatype model that requires
reliable causal delivery. The API is standard; it supports the usual broadcast and delivery
APIs in addition to novel ones that could be exploited in cases where application-level
meta-data needs the internal causality information of the middleware (e.g., timestamps)
or even do garbage collection. Therefore, TCSB can be used mainly at heavy edge to
support classical op-based CRDTs as well as efficient ones as pure op-based CRDTs.

LightKone D3.1(v2.0), January 15, 2019, Page 42

CHAPTER 4. PLAN AND PROGRESS

Through our work on TCSB, we found that exposing the causal relation between mes-
sages to the application could seem very trivial at first glance. However, this “exposing”
of the causality meta-data is tricky, and could lead to many pitfalls if not done with care.
We plan in the future to discuss those pitfalls to help and guide implementors be aware of
them and to provide a simple, generic and elegant design and implementation of Tagged
Causal Delivery and Stability that provides the necessary meta-data to applications (such
as CRDTs) for correct semantics and behavior. In addition, We aim to provide an im-
proved version of this TCSB where causality is based on dots instead of vector clocks.
(A dot is a lightweight meta-data representing a pair of actor id and a local counter.) We
expect that this new implementation would be more efficient than the vector clock based
one and helps us scale better to fit edge scenarios.

4.3.2 Partisan

Problem. Despite the pervasiveness of distributed applications, runtime support for
building cloud and edge/fog tailored distributed applications remains rare, requiring ap-
plication developers to build and maintain a communications framework in addition to
their application code. While not yet the norm in industry, there are some notable counter
examples, all of which are implementations of a distributed actor model; for example:
Akka Cluster [2], Microsoft Orleans [25], and Distributed Erlang [106]. Each of these
frameworks enables transparent distributed programming for the platforms they are de-
signed for, but all three optimize for a single type of application: low-latency, small-
object messaging between nodes in a single cluster, operating inside the data center, us-
ing the full mesh model— which is not scalable (O(N2)) with the number of nodes in the
network N. Therefore, an edge network composed of two or more network topologies
may be desired without paying this price in Distributed Erlang (in which the majority
of artifacts in LightKone are implemented). Thus, there is a need for a communica-
tion library that supports multiple communication patterns and network topologies (e.g.,
server/client, peer-to-peer, Publish/Subscribe, etc.) at once.

Solution. We developed Partisan, an alternative distribution layer and distributed pro-
gramming model for Erlang and Elixir. Partisan is designed to be used instead of, or
alongside of, Distributed Erlang, and supports multiple cluster topologies, all of which
can be specified at runtime. Partisan supports five different topologies that are common
in edge networks: full mesh (with or without Distributed Erlang), client-server, peer-to-
peer, static, and publish-subscribe. To be able to support all of these different topologies
in a single system, Partisan does not attempt to provide feature parity with Distributed
Erlang, but instead, presents a smaller programming API that can be supported by all of
the different topologies efficiently. Partisan provides a rich API for users with standard
operations for viewing cluster membership, joining and removing nodes from the cluster,
and asynchronously delivering messages to other nodes in the cluster.

Partisan also addresses the problem of the “one-size-fits-all” topology: since, Dis-
tributed Erlang assumes one network topology for cluster communication, the design
cannot be optimal for all types of edge and distributed applications. Therefore, Partisan
allows the user to specialize these topologies at runtime, choosing the most appropriate
topology for the application at hand. The support topologies are as follows:

LightKone D3.1(v2.0), January 15, 2019, Page 43

CHAPTER 4. PLAN AND PROGRESS

• Static. In static mode, Partisan will only connect to other nodes that have been
explicitly configured at the time of node deployment time.

• Full Mesh. In full mesh mode, Partisan will ensure all nodes in the cluster are
fully connected; in that, each node will connect to every other node in the cluster
directly, ensuring each node has full knowledge of the entire cluster. This topology
is an implementation of the default configuration of Distributed Erlang.

• Client-Server. In client-server mode, Partisan will ensure that all nodes tagged as
clients only connect to nodes tagged as server; and all nodes tagged as server nodes
will connect to one another. Client-server is an implementation of the traditional
topology used by rich-web and mobile applications.

• Peer-to-Peer. In peer-to-peer mode, Partisan will have all clients connect to one
other client in the system and the resulting network will approximate an Erdös-
Rényi model.

• Publish-Subscribe. In publish-subscribe mode, Partisan will connect to precon-
figured AMQP message broker for node-to-node messaging and dissemination of
cluster membership information.

Partisan work is under submission. The code is open-source freely available on
GitHub (see Chapter 5), and has several industry adopters.

Feasibility and future plan. Partisan implements, as a backend, HyParView [63] and
Plumtree [86] hybrid gossip membership and overlay protocols that are known of their
efficiency in large peer-to-peer (as light edge networks). They use spanning trees to
disseminate payload and flooding to exchange small mete-data to reconstruct the tree
when failures occur. As applications written using Partisan can modify the topology at
runtime, Partisan can be used as a basis for trying out various types of cluster topologies,
and running comparisons between them, as we explore and identify the most appropriate
topologies for the edge computing environment. Partisan is currently used as backend
to Lasp [73] and overlay layer for TCSB mentioned earlier. In the future, we plan to
evaluate Partisan empirically to measure its scalability to the number of edge nodes.

4.3.3 Erlang Communication Support for Edge computing
From its origin as a Telecom language, the Erlang Virtual machine (EVM) has been
designed from the ground-up with the ideas of concurrency, availability and distribution.
As such it offers built-in tools for designing scalable systems, as it has been demonstrated
during the last decades. Unfortunately, edge computing requires the EVM to be able
to support clusters with a very large number of nodes, and the current implementation
shortcomings prevent such a use-case.

In details, the EVM is limited in the number of nodes that can take part of a cluster,
because it is designed as a full-mesh graph of interconnected nodes. Consequently, the
number of connections in the cluster grows N2 with the number of nodes. A solution to
support the scale of distribution required by the edge computing use-case is to add to the
EVM a mesh distribution model where messages would be routed through multiple nodes

LightKone D3.1(v2.0), January 15, 2019, Page 44

CHAPTER 4. PLAN AND PROGRESS

to their destination. Because in a mesh model the messages are routed through multiple
nodes and the topology can change over time, we lose the strict message delivery ordering
guarantee required by the EVM. In addition, the well-known EVM issue with head-of-
line message blocking gets even worse when a message needs to pass through multiple
nodes to reach its destination. We discuss these problems and the corresponding solutions
we developed in the two following sections.

(a) Message Strict Ordering

Problem. An Erlang process requires the guarantee that all the messages it receives
from another process are received in the order they have been sent. This guarantee is
easily fulfilled in the current implementation, because all nodes are interconnected and
all the message between two nodes are serialized in a single TCP connection. In the case
of a mesh network, the changes in topology could result in messages reaching their des-
tination in a different order they have been sent. Any mesh distribution model should be
able to detect out-of-order messages and re-order them before delivering them to the des-
tination processes. Even though the current implementation provides node-level message
ordering, we only need process-level message ordering. Having a finer-grained ordering
requirement prevents a lost or delayed message between two processes to block all the
messages between other processes routed through the same node.

Solution. We developed a proof-of-concept distribution model for the EVM available
on Github (see the Software chapter 5). The current proof-of-concept achieves solves
the above issue by grouping messages in channels, a channel being defined by a pair of
process identifiers in the case of normal inter-process messages. All the messages for
a given channel have a strictly monotonically increasing sequence number that is used
by the destination node to enforce the message ordering. In addition of the inter-process
messages, the EVM needs to support messages where the recipient is not a process. These
messages are used to provide services like process and node monitoring, and connection
health checks (tick messages). The distribution model prototype handles these messages
by using different channels when possible and falling back to a special out-of-band chan-
nel when not. In the particular case of the tick messages used to monitor the health of the
connections, they are sent with the highest priority, short-cutting the message reordering
layer. The implications of losing global node-level message ordering guarantee is still
under investigation, but the preliminary results from the proof-of-concept distribution
model show that it should not break the usual Erlang assumptions.

(b) Head-Of-Line Blocking

Problem. A well-known issue with the current EVM distribution model implementa-
tion, that sending large messages blocks all the other concurrent messages to the same
destination node. This is called the head-of-line blocking issue. In a mesh network,
where the messages travel through multiple nodes, the delay introduced by this issue
accumulates along the path.

Solution. In order to have a predictable latency for message delivery, our solution intro-
duced in the proof-of-concept distribution model is to fragment all the messages in small

LightKone D3.1(v2.0), January 15, 2019, Page 45

CHAPTER 4. PLAN AND PROGRESS

chunks and schedule them fairly so no large message blocks the other ones. Given the
distribution model prototype already has the concept of channel for messages, it sched-
ules the messages per channel. The result is that processes sending very large messages
will never block other processes sending small ones, even if the destination is the same
process. At this stage, the fragments are sent following a round-robin scheduling per
channel.

20 60 10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

58
0

62
0

66
0

70
0

74
0

78
0

82
0

86
0

90
0

94
0

98
0

10
20

10
60

11
00

11
40

11
80

12
20

12
60

13
00

13
40

13
80

0

10

20

30

40

50

60

70

80

90

built-in gen_tcp_dist proto_tcp_dist

RTT (ms)

Figure 4.3.1: RTT distribution of 500 samples

Additional pedantic detail. The proof-of-concept distribution model we developed
takes advantage of a new EVM API currently only available as a patch for OTP 20.0.4
that should be officially released with OTP 21. With this API it is possible to develop an
EVM distribution layer entirely in Erlang without the need for low-level driver.

We have also experimented these features through a Head-of-Line Blocking bench-
mark. The benchmarking environment consists of two EVM nodes connected through
Wi-Fi using either the built-in distribution, gen tcp dist distribution module or the pro-
totype implementing message fragmenting proto tcp dist. gen tcp dist is an example
provided with the API patch that replicate the exact behavior of the built-in distribution
using the new API, it is used to compare the eventual cost of using an Erlang-level distri-
bution module. The benchmarking setup is to start 10 process pairs exchanging a binary
message of a given size between the two nodes. The benchmark in itself consists of
measuring the average time for a synchronous call between the two nodes.

The preliminary results of the benchmarking of the current proof-of-concept distribu-
tion model shows that packet fragmenting greatly reduces the impact of the head-of-line
blocking issue when large messages are being sent by other processes. Figure 4.3.1 shows
the distribution of the RTT for the different distribution backends.

LightKone D3.1(v2.0), January 15, 2019, Page 46

CHAPTER 4. PLAN AND PROGRESS

(c) Feasibility and future plan.

The above features are important contributions for the efficiency of Distributed Erlang.
Being at the EVM level, these contributions are generic and could be helpful to any
distributed edge computing protocol using Erlang, among those used in LightKone. Cur-
rently, the prototype focuses on resolving the head-of-line blocking issue. Even though
it provides support for out-of-order messages, it is not yet required because there is no
mesh networking and message routing at this point. In the future, we aim at supporting
UDP-based distribution protocols. We are currently working together with Ericsson to
improve the Erlang custom distribution API in Erlang/OTP. The current OTP API is very
much connection oriented, which means we need to fake connections to it even if we are
using UDP. What we hope to learn by implementing distribution in UDP is how the API
needs to be extended to make a connectionless transport work smoothly.

4.4 Scalable Data Management at the Edge
Data scalabilty is an essential feature to support edge networks and applications. There
are at least two scalability dimensions of particular interest at the edge: storage and
network size. The former differs from classical cloud systems given the relateively lim-
ited storage capacities of edge devices, even those at the heavy edge like micro data
centers [55, 68, 95]. A natural technique to address this challenges is to use partional
replication (a.k.a., partitioning or sharding). SOTA data partioning is inadequate to edge
systems due to the overhead of metadata and voluminous payloads disseminated espe-
cially when some properties, like causal consistency, are needed [66, 67, 111]. In this
vein, we introduce two solutions to address data partitioning through reducing the meta-
data disseminated, as explained next in Saturn, or even avoid sending the payload if
unnecessary, as explained next in nonuniform partial replication. The other dimension is
addressing the increazing network size likely in edge networks and applications. In par-
ticular, highly available datatypes as CRDTs can only scale to few tens of nodes due to
the incured metadata overhead [7, 17, 84]. To that end, we introduce two techniques that
provide highly scalable counters using hierarchical containment (i.e., Handoff Counters)
or transient identity borrowing (i.e., Borrow Counters). These techniques, as detailed in
the following sections, are inspiring approaches to develop more sophisticated datatypes
beyond counters in the next part of the project.

4.4.1 Saturn
Problem. The problem of ensuring consistency in applications that manage replicated
data is one of the main challenges of distributed computing. The observation that dele-
gating consistency management entirely to the programmer makes the application code
error prone and that strong consistency conflicts with availability has spurred the quest
for meaningful consistency models, that can be supported effectively by the data service.
Among the several invariants that may be enforced, ensuring that updates are applied and
made visible respecting causality has emerged as a key ingredient among the many con-
sistency criteria and client session guarantees that have been proposed and implemented
in the last decade. Mechanisms to preserve causality can be found in systems that offer
from weaker to stronger consistency guarantees. In fact, causal consistency is pivotal in

LightKone D3.1(v2.0), January 15, 2019, Page 47

CHAPTER 4. PLAN AND PROGRESS

the consistency spectrum, given that it has been proved to be the strongest consistency
model that does not compromise availability. To maintain causality, data is often as-
sociated with metadata, e.g., timsetamps or token tags. Previous solutions either favor
throughput by compressing metadata into a single scalar [42], penalizing remote visi-
bility latency; or favor remote visibility latency by using more precise ways of tracking
causality: using more metadata that usually is not constant but dependant on the number
of objects [66, 67], or the number of datacenters [3, 111].

Solution. Saturn [22] is a novel metadata service that can be used by geo-replicated
data services to efficiently ensure causal consistency across geo-locations. Its design
brings two main contributions:

• It eliminates the tradeoff between throughput and data freshness inherent to pre-
vious solutions. To avoid impairing throughput, our service keeps the size of
the metadata small and constant—namely labels, independently of the number of
clients, servers, partitions, and locations. By using clever metadata propagation
techniques, we also ensure that the visibility latency of updates approximates that
of weak-consistent systems that are not required to maintain metadata or to causally
order operations.

• It allows data services to fully benefit from partial geo-replication, by implement-
ing genuine partial replication, requiring datacenters to manage only the data and
the metadata concerning data items replicated locally.

Saturn is solely responsible of propagating labels (the metadata associated to each
update operation) among datacenters, delivering them in an order that respects causality.
The service assumes that the update payload is propagated among locations by means
of some bulk-data transfer scheme that fits the application business requirements. A
datacenter makes remote updates visibile to local clients in the order in which the labels
are received. For this, it has to have received not only update’s corresponding label, but
also the update’s payload (tagged with the label).

Saturn exploits the fact that causal order is a partial order to deliver different serial-
ization of labels to each datacenter with the goal of minimizing remote update visibility
latency: the time that takes for updates to become visible in remote datacenters. To
achieve this, Saturn relies on a tree-based dissemination architecture. This architecture
is composed by a set of serializers organized in a way that the metadata paths (latency
between datacenters when traversing the tree) matches (when possible) the data paths
(latency among datacenters through the bulk-data transfer scheme). In addition, labels
include information with regard to the data being updated. Based on this information,
Saturn can selectively deliver labels to only the set of interested datacenters, enabling
genuine partial replication.

In our experiments, Saturn has demonstrated to add negligible overhead in terms of
throughput and remote visibility latency when attached to data services that enforce no
consistency in both full and partial replicated settings with a handful set of datacenters.

Feasibility and future plan. Nevertheless, Saturn was designed for datacenter-based
could computing. Therefore, its design expects a handful set of powerful, stable replicas.
Instead, in edge computing, we expect a potentially large set of heterogeneous, unstable

LightKone D3.1(v2.0), January 15, 2019, Page 48

CHAPTER 4. PLAN AND PROGRESS

resources. Thus, Saturn would require multiple modifications to work on the edge com-
puting paradigm. Saturn needs to find the optimal architecture given the set of replicas,
such that the latencies among replicas through the tree and through the data paths differ
minimally. This is at the moment done by means of a constraint solver that finds the
optimal configuration among all possible. This is expensive and not solvable in polino-
mial time. When increasing the number of replicas, we will have to find a suboptimal
mechanism that it is capable of scaling up to a large number of replicas. In addition,
Saturn does not consider replicas failing or simply being offline constantly. Thus, its
default reconfiguration mechanism requires recomputing the configuration considering
all replicas again (as we expect this to happen very infrequently). This may be to ex-
pensive if failures occur frequently. We believe a method to repair the tree in a reactive
way is required such that only small changes to the tree are applied. The same applies to
new replicas joining. Finally, Saturn permits clients to migrate among replicas. This is
crucial when having partial replication: clients may need to read data that it is not repli-
cated in their local replica. In Saturn, consistent migration is implemented in a simple
but not so efficient manner. This is because in Saturn, we assume that the replicas are
datacenters with capability for storing most of the data their local clients may require,
which makes the migration operation infrequent. Nevertheless, under edge computing,
the replicas placed on the edge of the network will have significantly less resources than
a datacenter. This will force clients to migrate more often in order to read data that it is
not replicated locally. Thus, Saturn’s migration mechanism needs to be optimise to offer
a good quality-of-service to clients when operating on the edge.

4.4.2 Nonuniform replication
Problem. When adopting partial replication, each replica only maintains part of the
data. As a consequence, each replica can only locally process a subset of the database
queries. In geo-replicated scenarios, where each data center only maintains part of the
data, for executing a query it might be necessary to contact one or more remote data
centers, leading to high latency for executing operations. In edge scenarios, where edge
replica necessarily maintain only a subset of the data, this problems becomes more im-
portant.

Solution. We propose an alternative partial replication model, the non-uniform replica-
tion model, where each replica maintains only part of the data but can process all queries.
The key insight is that for some data objects, not all data is necessary for providing the re-
sult of read operations. For example, an object that keeps the top-K elements only needs
to maintain those top-K elements in every replica. However, the remaining elements are
necessary as one of the elements not in the top needs to be promoted when a top element
is removed. This top-K object could be used for maintaining the leaderboard in an online
game.

In our work, we have: formalized the concept of non-uniform replication; applied the
model to replicated systems that provide eventual consistency; derived sufficient condi-
tions for providing non-uniform eventual consistency; and defined CRDTs that adopt the
non-uniform replication model.

For formalizing the non-uniform replication model, we started by defining that two
object states, si and s j, are observable equivalent, si

o≡ s j, iff the result of executing every

LightKone D3.1(v2.0), January 15, 2019, Page 49

CHAPTER 4. PLAN AND PROGRESS

read-only operation on both states is equal, i.e., ∀o ∈ Q,o(si) = o(s j), with Q the set
of read-only operations. A replicated system is non-uniform if the replication protocol
guarantees that in a quiescent state, i.e., after the propagation of all relevant updates to
all replicas, the state of any two replicas is observable equivalent.

The non-uniform replication model can be used in replicated systems that provide
eventual consistency. We say that a replicated system provides non-uniform eventual
consistency iff in a quiescent state the state of any replica is observable equivalent to the
state obtained by executing some serialization of O, with O the set of operations executed.
As a consequence, the state of any pair of replicas is also observable equivalent.

For a given set of operations in an execution O, we say that Ocore ⊆ O is a set of core
operations of O iff s0 •O

o≡ s0 •Ocore, with s0 the initial state of all replica, i.e., the states
obtained by executing a serialization of operations of O and Ocore in the same initial state
is observable equivalent.

A replication system provides non-uniform eventual consistency (NuEC) if, for a
given set of operations O, the following conditions hold: (i) every replica executes a
set of core operations of O; and (ii) all operations commute.

Given these sufficient conditions, we have derived an algorithm for defining which
operations need to be propagated to other replicas. The algorithm locally classifies opera-
tions in four groups: the operations that will never have impact in the observable state; the
operations that have impact in the observable state, as computed locally; the operations
that might have impact in the observable state, depending on the operation that have been
executed in other replicas; the operations that might have impact in the observable state
in the future. Only the operations in the second and third group need to be propagated,
as proved by Cabrita et. al. [26].

Finally, we have applied this concept to operation-based CRDTs, by developing use-
ful operation-based CRDTs that adopt this model (NuCRDT).

Feasibility and future plan. The goal of non-uniform replication is to allow replicas
to store less data and use less bandwidth for replica synchronization. Although it is clear
that non-uniform replication cannot be useful for all data, we believe that the number of
use cases is large enough for making non-uniform replication interesting in practice. We
now discuss two classes of data types that can benefit from the adoption of non-uniform
replication.

The first class is that of data types for which the result of queries include only a subset
of the data in the object. In this case two different situations may occur: (i) it is possible
to compute locally, without additional information, if some operation is relevant (and
needs to be propagated to all replicas); (ii) it is necessary to have additional information
to be able to decide if some operation is relevant.

An example of the former is a Top-K CRDT that allows access to the top-K elements
added to the object. This object can be used, for example, for maintaining the leader-
board in online games or for maintaining materialized views of partitioned data. Another
example includes a data type that returns a subset of the elements added based on a (mod-
ifiable) user-defined filter – e.g. in a set of books, the filter could select the books of a
given genre, language, etc.

An example of the latter is the Top-Sum NuCRDT that maintains the top-K elements
added to the object, where the value of each element is the sum of the values added for
the element. This data type can be used for maintaining a leaderboard in an online game

LightKone D3.1(v2.0), January 15, 2019, Page 50

CHAPTER 4. PLAN AND PROGRESS

where every time a player completes some challenge it is awarded some number of points,
with the current score of the player being the sum of all points awarded. It could also
be used for maintaining a top of the best selling products in an (online) store (or the top
customers, etc). Another example includes a data type that returns the 50th percentile (or
others) for the elements added – in this case, it is only necessary to replicate the elements
in a range close to the 50th percentile and replicate statistics of the elements smaller and
larger than the range of replicated elements.

In all these examples, the effects of an operation that in a given moment do not in-
fluence the result of the available queries may become relevant after other operations are
executed — in the Top-K with removes due to a remove of an element in the top; in the
filtered set due to a change in the filter; in the Top-Sum due to a new add that makes an
element relevant; and in the percentile due to the insertion of elements that make the 50th

percentile change. We note that if the relevance of an operation cannot change over time,
the non-uniform CRDT would be similar to an optimized CRDT that discard operations
that are not relevant before propagating them to other replicas.

A second class is that of data types with queries that return the result of an aggregation
over the data added to the object. An example of this second class is the Histogram CRDT
presented in the appendix. This data type only needs to keep a count for each element.
A possible use of this data type would be for maintaining the summary of classifications
given by users in an online shop. Similar approaches could be implemented for data types
that return the result of other aggregation functions that can be incrementally computed
[79].

A data type that supports, besides adding some information, an operation for remov-
ing that information would be more complex to implement. For example, in an His-
togram CRDT that supports removing a previously added element, it would be necessary
that concurrently removing the same element would not result in an incorrect aggregation
result. Implementing such CRDT would require detecting and fixing these cases.

As discussed in deliverables of WP5 and WP6, we have integrated the non-uniform
replication model in AntidoteDB and are studying how to adopt it in the frameworks
developed specifically to run in the light-edge.

4.4.3 Handoff counters
Problem. A problem that can easily arise in state-based CRDTs is scalability: if there is
one replica per participating entity, each one with a unique identity, as many CRDTs keep
maps with these ids as keys, these maps will keep growing over time, as more entities
participate; this results in each replica having size proportional to the total number of
entities that ever participated in the system, which is not scalable. This will be specially
problematic in edge-computing use cases that include large numbers of entities.

One possible approach to address scalability is to restrict replicas to a small num-
ber of server nodes, excluding clients from the participating entities, in what concerns
the CRDT. In the case of edge computing, this would mean choosing some nodes as
“servers”, making all the others be clients. This will solve the scalability problem and al-
low unreliable communication between server nodes, but will not solve the fault-tolerance
problem in the client-server interaction. This is because a basic problem with counters
is that the increment operation is not idempotent; therefore, an increment request by a
client (which itself does not keep a replica) cannot just be re-sent to the server in case

LightKone D3.1(v2.0), January 15, 2019, Page 51

CHAPTER 4. PLAN AND PROGRESS

there is no acknowledgment. This approach would be poor in terms of fault-tolerance,
not exploiting system-wise the good fault-tolerance properties of state-based CRDTs.

Solution. Handoff Counter is a state-based counter that we have developed, which ad-
dresses both scalability, availability and fault-tolerance, allowing each participating node
to be a replica. The mechanism is described in detail in a journal paper [5], accepted for
Springer Distributed Computing. In brief, the main ingredients of our approach are:

• a replication mechanism that is non-symmetric (contrary to standard CRDTs where
all replicas converge to the same state);

• hierarchical tiered topology that allows availability through alternative communi-
cation paths and different roles, e.g., many pure transient clients, a few permanent
persistent servers in datacenters, and many intermediate-tier nodes spread over the
edge;

• node identity containment. Contrary to typical CRDTs, node ids are not propagated
to the whole network, being only temporarily stored in the state of some neighbor
nodes;

• a mechanism to perform a reliable handoff of a value between two nodes, possibly
using a third party, to achieve tolerance to partitions or transient node failures.

The mechanism allows arbitrary numbers of nodes to participate and adopts the CRDT
approach, having a replica at each node without distinguishing clients and servers (there-
fore, overcoming the problems of server-side CRDTs), and allowing an operation (fetch
or increment) to be issued at any node. It addresses the scalability issues (namely the id
explosion in version-vectors used in traditional counters) by: assigning a tier number (a
non negative integer) to each node, in a hierarchical structure, where only a small num-
ber of nodes are classified as tier 0; having “permanent” version vector entries only in
(and for) tier 0 nodes, therefore, with a small number of entries; having a handoff mech-
anism which allows a tier n+ 1 “client” to handoff values to some tier n “server” (or
to any lower tier node, in general); making the entries corresponding to “client” ids be
garbage-collected when the handoff is complete.

Additional pedantic details. The essence of the handoff mechanism relies on two
components of the replica state, one containing what we call slots – each slot serves
as a capability of receiving a value – and the other contains tokens – a token holds a value
and matches a single slot. The general idea is that, over time: a slot is created in the state
of a node j (destination of the handoff); a token matching that slot is created in another
node i (source of the handoff) to which some value (number of increments) accounted
locally is moved; the slot at j is “filled”: the slot is removed and the value in the corre-
sponding token is acquired by j (added to the locally accounted value); node i removes
the token. The mechanism ensures correctness no matter what communication patterns
may occur. Towards this, each node also keeps a pair of counters: the source clock and
the destination clock. Figure 4.4.1 presents a run where a node i hands off some value
(9 in this example) to a node j, when no messages are lost. The non-zero values in the

LightKone D3.1(v2.0), January 15, 2019, Page 52

CHAPTER 4. PLAN AND PROGRESS

Node i Node j

Sck: 2
Dck: 0
Vals: i ��9
Slots:
Tokens:

Sck: 0
Dck: 6
Vals: j � 1021
Slots: i � (2,5)
Tokens: Sck: 3

Dck: 0
Vals: i � 0
Slots:
Tokens: (i,j) �����������

Sck: 0
Dck: 5
Vals: j � 1021
Slots:
Tokens:

Sck: 0
Dck: 6
Vals: j � 1030
Slots:
Tokens:

Sck: 3
Dck: 0
Vals: i � 0
Slots:
Tokens:

Time

Ci

C'i

C''i

Cj

C'j

C''j

Higher tier source Lower tier destination

Figure 4.4.1: A handoff from node i to j (only relevant fields are shown).

source clock of node i and destination clock in node j indicate that the run is a continu-
ation of a longer run that already did some handoffs from i to j. Several properties are
ensured, namely:

• A given slot cannot be created more than once; even if it was created, later removed
and later a duplicate message arrives;

• A token is created specifically for a given slot, and does not match any other slot;

• A given token cannot be created more than once; even if it was created, later re-
moved and later a duplicate message having the corresponding slot arrives.

We have both proved the mechanism correct, and performed experimental evalua-
tion, which confirmed the good scalability and fault-tolerance properties. Two imple-
mentation of the mechanism where made, one in Clojure, publicly available at https:
//github.com/pssalmeida/clj-crdt, and another in Rust, available at https://github.com/
pssalmeida/handoff counter-rs. To efficiently evaluate scenarios with up to one hun-
dred thousand clients, we built a discrete event simulator for asynchronous networks
using the Rust programming language. The simulation infrastructure, including the
scripts used to obtain the results (as well as the runs performed) can be obtained from
https://github.com/pssalmeida/handoff counter simulator-rs.

Feasibility. As we discuss in the journal paper, the underlying mechanism and lessons
learned are applicable far beyond simple counters. We have devised a mechanism which
allows some value to be handed off reliably over unreliable networks, through multiple
paths to allow availability in the face of temporary node failures or network partitions.
Values are moved from one place to another by “zeroing” the origin and later “adding”

LightKone D3.1(v2.0), January 15, 2019, Page 53

https://github.com/pssalmeida/clj-crdt
https://github.com/pssalmeida/clj-crdt
https://github.com/pssalmeida/handoff_counter-rs
https://github.com/pssalmeida/handoff_counter-rs
https://github.com/pssalmeida/handoff_counter_simulator-rs

CHAPTER 4. PLAN AND PROGRESS

to the destination. Reporting is made by aggregating in two dimensions: “adding” values
and taking the “maximum” of values. The value accounted at each node is updated by
a commutative and associative operation which “inflates” the value. Given the above,
the handoff counter CRDT can be generalized to any commutative monoid; and one can
inspire from it to design more useful and complex datatypes in the future.

4.4.4 Borrow Counters
Another way to address edge network scalability is to exploit the behaviour of nodes in
dynamic settings to circumvent the identity explosion problem. Instead of the generic
hierarchical design of Handoff Counters, here we propose a simple two-layered design,
distinguishing only permanent nodes (e.g., datacenter nodes) and transient nodes (e.g.,
end-clients). The overall idea is that, when a transient node joins the system, it asks to
borrow an identity from a permanent node. While in the system, it uses this borrowed
identity to increment the counter. If the transient node wishes to leave the system, it
marks the borrowed identity as an inactive. When a permanent node observes inactive
identities, it performs garbage-collection of these entries.

The Borrow Counter [46] makes use of the Causal CRDT [7] concept to achieve the
transfer of increments from transient to persistent nodes in an elegant way, allowing node
retirement without incurring a permanent impact on state growth. Figure 4.4.2 shows an
example with two nodes a and b: node a acts as permanent and b as transient. Node a
starts by creating dot a1 for itself, and later on dot a2 for node b; node a increments the
counter by 9, and b by 8; node b disables its dot and node a transfers node b increments
to its entry in the Borrow Counter. (Here we are denoting inactive dots by bold numbers,
and representing the causal context in the Borrow Counter by its maximal entries, i.e.
{a1,a2,c1} ≡ {a 7→ 2,c 7→ 1}).

s0 =⊥

s1 = createa(s0,a)

s2 = createa(s1,b)

s3 = inca(s2,9)
s4 = incb(s3,8)

s5 = retireb(s4)

s6 = transfera(s5,b)

({},{})

({a 7→ {a1 7→ 0}},{a 7→ 1})

({a 7→ {a1 7→ 0},
b 7→ {a2 7→ 0}},{a 7→ 2})

({a 7→ {a1 7→ 9},
b 7→ {a2 7→ 8}},{a 7→ 2})

({a 7→ {a1 7→ 9},
b 7→ {a2 7→ 8}},{a 7→ 2})

({a 7→ {a1 7→ 17}},{a 7→ 2})

Figure 4.4.2: Borrow Counter example with two nodes: node a is permanent, while node
b acts as transient

Additional pedantic details. A Borrow Counter is a Causal CRDT where the dot store
is a DotMap [7] from node identifiers to another dot store. This other dot store is a

LightKone D3.1(v2.0), January 15, 2019, Page 54

CHAPTER 4. PLAN AND PROGRESS

DotFun [7] mapping dots to the lattice pair B×N (where B is the set of booleans, and
N the set of naturals). A node can increment the counter if its entry in the map has at
least one active dot (dots created by permanent nodes) i.e. at least a dot in the DotFun
mapped to a (False,) pair. When a transient node retires, it marks all its dots as inactive.
This transition from active to inactive is irreversible, as given by the False< True lattice
used in the pair. Once a transient node makes a dot inactive, it surrenders the capability
of issuing further increments to that entry, allowing a safe subsequent transfer to the
permanent node that created it.

Feasibility. Borrow Counters are an effective technique to address the issue of identity
explosion of large edge networks. In particular, it is very convenient to situations that
incur transient nodes as in dynamic networks (e.g., mobile networks or Vanets). In ad-
dition, the idea of Borrow Counters can be generalized to design other datatypes in the
same manner. In our experience, most CRDT datatypes can be designed as such. We
plan to investigate this topic further in the remaining part of the project.

LightKone D3.1(v2.0), January 15, 2019, Page 55

CHAPTER 4. PLAN AND PROGRESS

LightKone D3.1(v2.0), January 15, 2019, Page 56

Chapter 5

Software Deliverables

In this section, we present the software deliverables, libraries, and components in which
the contributions presented in this report appear. Most of these software are direct arte-
facts that show in LiRA or used as backend components and libraries. Since this work
package is meant to provide the support to build generic edge computing runtimes, we
believe that developing fine-grained components is crucial to increase the impact of
LightKone’s work on external edge computing platforms. Indeed, although LiRA per-
fectly fits the set of LightKone use-cases, the latter represents a sample edge computing
set of applications, and thus addressing more use-cases may require building other edge
computing runtimes. To this end, the components provided in this deliverable can be used
in building new edge runtimes or integrated in existing ones to leverage the technology
LightKone provides.

• AntidoteDB: is a geo-replicated CRDT data store offering transactional causal con-
sistency and fits nicely the heavy edge. It is publicly available under Apache 2.0
license. Available at https://github.com/SyncFree/antidote.

• Lasp: a framework that allows to design and execute scalable synchronization-
free applications that resort to CRDTs as their data model. Available at https:
//github.com/lasp-lang/lasp.

• Antidote CRDT library: an Erlang library of operation-based CRDTs comprising
counters, flags, maps, sets, integer, registers and sequence (RGA). The library can
be used in any system, and is currently used in Antidote. Available at https://
github.com/SyncFree/antidote crdt.

• Legion: a framework that allows to develop web-based client applications that
leverage of edge computing interactions among clients running the same applica-
tion in a transparent way. Available in https://github.com/albertlinde/Legion.

• Partisan: a TCP-based membership system written in Erlang/Elixir and imple-
ments the HyParView[63], hybrid partial view membership protocol, with TCP-
based failure detection. Partisan is suitable for dynamic topologies being robust
and lightweight. Available at https://github.com/lasp-lang/partisan.

• Efficient CRDTs library: a library of state-based, delta-based, delta-composition,
and pure-op-based CRDTs written in Erlang. The library includes implementations

57

https://github.com/SyncFree/antidote
https://github.com/lasp-lang/lasp
https://github.com/lasp-lang/lasp
https://github.com/SyncFree/antidote_crdt
https://github.com/SyncFree/antidote_crdt
https://github.com/albertlinde/Legion
https://github.com/lasp-lang/partisan

CHAPTER 5. SOFTWARE DELIVERABLES

of grow-only counter, positive-negative counter, lexicographic counter, bounded-
counter, grow-only set, two-phase set, add-wins and remove-wins set, enable-wins
and disable-wins flag, last-writer-wins and multi-value registers, and an add-wins
map. Available at https://github.com/lasp-lang/types.

• TCSB middleware: a vector-based middleware that implements the TCSB (Tagged
Causal Stable Broadcast) protocol, written in Erlang. The implementation sup-
ports efficient causal delivery and causal stability. Available at https://github.com/
gyounes/trcb base.

• proto dist: is an Erlang-level distribution protocol using the new EVM API in Er-
lang 21 to fix the head-of-line blocking issue with standard distribution. Available
at https://github.com/Stritzinger/proto dist, but access is provided upon request.

LightKone D3.1(v2.0), January 15, 2019, Page 58

https://github.com/lasp-lang/types
https://github.com/gyounes/trcb_base
https://github.com/gyounes/trcb_base
https://github.com/Stritzinger/proto_dist

Chapter 6

Security Analysis of Use-cases

Among the prime motivations behind edge computing is the potential to provide better
security and privacy guarantees. Although important, LightKone’s contribution on secu-
rity is limited to analyzing the security threats and requirements of LightKone use-cases
(presented in deliverable D2.1). The corresponding solutions can then be using standard
off-the-shelf security methods and tools or through developing novel solutions. Since
LightkKone’s focus is mainly on data managements and communication, we will only
highlight the open issues and potential threats, recommend off-the-shelf security mea-
sures, and develop new solutions to only part of these threats—as defending against DoS
attacks in WP5. A use-case-specific analysis will be presented in the future deliverable
to cover the entire software stack.

6.1 Overview
From the use cases description and security analysis in D2.1, it is possible to assume
that from the security point of view, the most significant challenges and open issues are
located into the Light-edge scope. In this way, the majority of use-cases (UCs) share
requirements that involve balancing data integrity, confidentiality, availability and au-
thentication with some kind of constraint in such entities. These constraints are gener-
ically related to device capabilities or undefined surface with external entities (i.e., the
boundaries between the system and its environment).

Considering this panorama, some research topics might benefit an encompassing
number of the proposed UCs. An early list is summarized below and further discussed
along security observations for each UC:

• Lightweight cryptography for Light-edge environments aiming to provide confi-
dentiality in data flows among constrained entities;

• Homomorphic encryption algorithms for operations over encrypted data, such as
aggregation and queries at the edge;

• Cross-platform software sandboxing in order to ensure contained operations in
third-party and heterogeneous entities;

• DoS identification and prevention at communication level for heterogeneous archi-
tectures.

59

CHAPTER 6. SECURITY ANALYSIS OF USE-CASES

Following subsections discuss specific security aspects in each UC.

6.2 UPC - Guifi.net community network
Although security issues are not a main concern, according to UC description in D2.1
report, some aspects might be pointed out. The most significant is the lack of a detailed
Threat and Adversary Model, including their number, definition, acceptable frequency
and severity. Some conflicting requirements also seem to impact security properties in
such system. In this way, some challenges and suggestions encompassing the three use
cases are firstly presented below.

From the system architecture, it is relevant to understand how entities interact with
each other, for instance, (i) is there any authentication mechanism between the central
database and the monitoring servers or between these servers and those monitored nodes?
(ii) how do the monitoring servers collect data from the nodes (e.g., SNMP)?; (iii) How
often do entities communicate?

Considering monitoring servers as the main source of threats, some mechanisms
might be deployed, for instance, (i) a more controlled process of instantiating a new
SNPService, following predefined security policies and (ii) a more sophisticated access
control, such as those based on public key certificates, which will improve authenticity,
integrity and accountability attributes.

From each UPC’s user case security analysis in D2.1, some challenges are listed in
following subsections.

6.2.1 Coordination between servers & Data storage for the monitor-
ing system

• Considering that SNPService is running at the premises of the users, avoiding data
tampering requires software verification and mechanisms able to prevent users
from changing/producing data collected from nodes;

• Task assignment might be performed based on consensus strategies, although some
threats regarding serve collusion will still remain;

• Assigning two monitoring servers to each network node is not enough in order to
guarantee integrity of collected data. Collusion attacks or a Byzantine server are
examples in which this approach fails. In addition, monitoring systems based in
pooling protocols, such as SNMP, will provide divergent measurement data due
to its asynchronous nature. This aspect will impact directly the cross-checking
suggested process;

• Replicating the local measurements with other monitoring servers increases the
system resilience and availability, however it raises some different threats, such as
data tampering or omission. As measurement data is only consumed by the central
database, it might be encrypted with the DB public key before being transmitted
to other serves. A major challenge here is to comply with the aggregation process
described in Section 2.5, as well as the computational burden involved in public
key cryptography in light-edge nodes (e.g., Single-Board-Computers described in

LightKone D3.1(v2.0), January 15, 2019, Page 60

CHAPTER 6. SECURITY ANALYSIS OF USE-CASES

Chapter 3). For the first challenge, an interesting research direction is resorting to
homomorphic encryption [78][98], which might stress the second challenge;

• Although the security analysis state that data protection is not a concern, users con-
sumption patterns (monitored for billing purpose) must be protected before repli-
cating across servers.

6.2.2 Service provision support for the Cloudy platform
• It is necessary to introduce some mechanism preventing users from writing service

data objects;

• A small challenge in this UC involves preventing service provides from manipu-
lating published service data objects for their own benefit. Currently everyone is
allowed to manipulate the entries;

• Considering that Guifi.net administrators can not arbitrate provided services (as in
SNPService), preventing underlying service providers from manipulating billing
information seems to be a major challenge in this UC.

6.3 Scality

6.3.1 Pre-indexing at the edge
The UC provides a reasonably clear threat model (a severity and tolerance analysis could
improve it), however the assumption that software and hardware platform at the client
premises are secure does not seem realistic, unless the client application provides some
kind containment mechanism. Some of the described threats might be exploited through
third-party application or at the communication level, mainly non-encrypted data and
pre-indexes.

Based on UC’s description, the objectives at security level consist in providing in-
tegrity and confidentiality guarantees to data, metadata and query responses at different
levels across the system. However, from the LightKone point of view, an interesting
showcase might be the metadata availability in case of network partition or divergent
data provoked by some malicious entity into the system tampering data (even uninten-
tionally).

For queries on encrypted data, an interesting research direction might involve homo-
morphic encryption, although the underlying computational burden might be an obstacle.

6.3.2 Lambda functions at the edge
This UC is quite similar to the previous one, with the addition of a new asset to be pro-
tected, i.e., Lambda functions, which might be running either in light-edge or heavy-edge
devices. Assuming that Lambda functions are running in isolated sandbox environments,
ensuring the correctness of each function (its integrity) and that they are properly authen-
ticated in order to access only the resources required in such computation seems to be the
major challenges, beyond those discussed in previous description.

LightKone D3.1(v2.0), January 15, 2019, Page 61

CHAPTER 6. SECURITY ANALYSIS OF USE-CASES

6.3.3 S3 local cache of central data

Although being architecturally similar to previous UC, this one has a less clear Threat and
Adversary Model, for instance, the privileges and access control of each entity caching
data or manipulating those already cached. Even so, the UC description provides a more
clear idea on which are the challenges identified by the partner, i.e., ensure cached data
integrity and prevent any unauthorized entity from eavesdropping on or tampering local
data.

Considering possible research challenges, a local mechanism able to prevent central
synchronization of unauthorized or maliciously deleted/tampered data seems to be an
interesting topic.

6.4 Stritzinger

6.4.1 No-Stop RFID

Due to resource constraints of RFID readers, the communication between RFID tags,
readers/writers (cache) is unencrypted and solely relies on efficiency of firewall rules at
the higher level of the network and physical access control at the factory. This model
might be improved based on lightweight cryptographic algorithms and certificates for
confidentiality, authentication and key distribution in order to prevent, for instance, an
employee or external supplier attacking the system with cheaper RFID writers. Lightweight
cryptography represents a growing research topic with interesting recent works from in-
dustry and academia [43, 47, 72].

This direction might tackle with some reported threats, such as, (i) protecting cache
data from eavesdropping or manipulation by unauthorized parties; (ii) ensuring that only
legitimate tags provide data to the system; (iii) verifying the authenticity of RFID reader
software and hardware.

Considering the WP 5 scope, the objectives related to security and resilience to DoS
attacks in communications between RFID readers seem to be a valuable showcase for
LightKone project.

6.4.2 Smart Metering Gateway

Although it seems to be a promising overall showcase for LightKone project, from the
security perspective, most of threats are out of Stritzinger’s scope, mainly due to the
intrinsic dependence of WM-Bus standard and what metering sensor suppliers provide
in this field. Even the communication between gateways relies on such approach. The
same situation is observed when considering data privacy, a highly sensitive aspect into
this UC.

Even so, some interesting topics can be pointed out, namely (i) authenticity verifica-
tion of software updates for meters and gateways might resort to selective reprogramming
(e.g., Deluge, MNP and MOAP); (ii) integrity, authentication and accountability might
resort to certificates (public or private); (iii) Aggregating encrypted data aiming to reduce
traffic overhead also might resort to homomorphic encryption; (iv) protecting gateways
from DoS attacks involves tailored IPS/firewalling rules.

LightKone D3.1(v2.0), January 15, 2019, Page 62

CHAPTER 6. SECURITY ANALYSIS OF USE-CASES

6.4.3 Swarm of Small Satellites
There is no security analysis for this use case in D 2.1.

6.5 Gluk - Agriculture Sensing Analytics
Globally, the most challenge aspect regarding the security analysis in this UC is the bal-
ance between all flexibility required in Chapter 6, Section 1.3 with security requirements
in Section 9.5. For instance, the usage of general purpose of-the-shelf sensors (e.g.,
Arduino/Raspberry Pi based), with effortless deployment, relying solely on the security
features provided by such hardware seem incompatible with both the listed security re-
quirements and the described thrust model.

In this way, a more detailed threat and adversary model should be provided, including
their probabilities, severity and acceptable levels. A better description of the assets to
be protected, such as sensors, communication channels, security mechanisms in use,
protocols and services are also indispensable for a clear understanding on this field.

Regardless the aspects aforementioned, some generic challenges can be identified:

• use of lightweight authentication and cryptography mechanisms in light-edge;

• provide secure communication channels among diverse device architectures (at
communication level);

• increase availability through energy aware processes. This aspect is already being
addressed into LightKone scope, i.e., LiteSense scheme;

• define and provide a secure domain in such flexible environment;

• preventing DoS at the communication layer.

LightKone D3.1(v2.0), January 15, 2019, Page 63

CHAPTER 6. SECURITY ANALYSIS OF USE-CASES

LightKone D3.1(v2.0), January 15, 2019, Page 64

Chapter 7

Advancing State of the Art

In this chapter, we provide a literature review of the works related to LightKone. We
cover reference architectures, distributed data management, and communication proto-
cols. Throughput the text, we show the advances of LightKone in this work package for
Year 1. A summary of the contributions is also presented in Table 7.0.1 for the conve-
nience of the reader. Considering the overall plan presented in Chapter 4 and the effort
conducted on LiRA, we estimate the current progress regarding the final milestone to be
between 30% and 40%.

Table 7.0.1: Summary of LightKone WP3 Contribution for Year 1.

Component Description Previous SOTA Contribution Software Reference
State CRDT State-based data man-

agement for relaxed
consistency at the
edge

Not generic enough;
few datatypes

Generic framework;
many datatypes; join-
decomposition

Legion,
Lasp

Cha 4. Sec.
4.2

Op CRDT Operation-based data
management for re-
laxed consistency at
the edge

Non-edge-tailored
datatypes; few
datatypes; not generic

Generic framework; op-
timized edge-tailored
datatypes; support resets;
many datatypes; resettable
counters

AntidoteDBCha 4. Sec.
4.2

Scalable
Counters
(Handoff and
Borrow)

Datatypes scalable
with the number
of edge nodes or
dynamicity

blocking sync
datatypes; ID explosion

scalable counters using hi-
erarchical trees; transient
IDs for counters; single
writer principle

None Cha 4. Sec.
4.4

Saturn Partial replication
(sharding) meta-
data handling with
causality support

Causal multicast proto-
cols; Cure protocol for
causal delivery

Reduced metadata propaga-
tion for enforcing causality;
timely delivery of updates

None Cha 4. Sec.
4.4

Causal Deliv-
ery and sta-
bility middle-
ware

middleware for causal
consistent systems
and op-based CRDTs

Redundant meta-data in
causal delivery

Reduced meta-data in
causal delivery; causal
stability concept

TCSB Cha 4. Sec.
4.3

Distributed
Communica-
tion

Edge-tailored alterna-
tives for distribution
layer for Erlang.

Plumtree, HyParView;
Erlang distribution

Partisan: Hybrid gossip-
based with different net
topologies and various clus-
ters; mesh-based EVM.

Lasp,
proto dist

Cha 4. Sec.
4.3

Computation
CRDTs

CRDTs for which the
state is the result of
a computation over
the executed opera-
tions (e.g. aggrega-
tion results), adopting
the non-uniform repli-
cation model

Distributed aggregation
protocols

Non-uniform replication
model; integrates computa-
tions with the storage

Antidote-
DB

Cha 4. Sec.
4.4

65

CHAPTER 7. ADVANCING STATE OF THE ART

7.1 LightKone Reference Architecture (LiRA)

State of the art of LightKone reference architecture (LiRA) is addressed in details in
Chapter 3. For completeness, we summarize the relation to state of the art focusing on
the data management aspect that is a key contribution of in LightKone. Being a promis-
ing extension to cloud computing, fog and edge computing have been very active areas in
research and industry. Consequently, several edge/fog architectures have been proposed
in SOTA like Open Fog [33], Edge Foundry [51], Microsoft Azure IoT [75], Amazon IoT
Green grass [11], ETC Edge Computing [32], and ETSI MEC [48]. However, there is
an existing gap in all these architectures in the data management level of the application
layer in which data cannot be efficiently shared/replicated unless through an upper layer
intermediary (a higher layer fog node or the cloud center). This represents a single point
of failure and imposes unacceptable response time to edge applications. The main inno-
vation in LiRA is the support for generic application-level data and computation through
developing artifacts and software components that support replicated data that is highly
available and proven to converge at once. Importantly, LiRA allows data sharing across
the hierarchy of the edge system as well as at the same layer. In addition, LiRA artifacts
span a wide spectrum of heavy, medium, and light edge/fog devices thus supporting a
wide range of applications and patterns.

LiRA is compatible and complementary to SOTA architectures. For instance, the
OpenFog RA (ORA) is a generic architecture that set standards and recommendations to
the required features and properties at the entire software stack. It emphasizes the impor-
tance of autonomy and availability without proposing solutions to them at the application
layer as in LiRA. In the discussed use cases, ORA highlights the difficulty of data sharing
at the same edge layer, which LiRA provides in particular. On the other hand, Microsoft
Azure IoT is based on a time streaming where data is basically pushed to the cloud center
for processing. To improve response times, a ”warm” database is used to provide data
for edge IoT devices mainly, for a recent date and time range, aggregated data for one or
many devices, etc. Therefore, there is no support for generic edge applications semantics
or data management at the edge/fog layer as we do in LiRA. ECC Edge Computing fol-
lows the Azure IoT approach ensuring a fast time series (centralized) database that stores
immutable data associated with timestamp for speed.

Contrary to Azure IoT and ECC Edge Computing, Amazon IoT Greengrass extends
Amazon’s AWS cloud to edge devices, allowing edge devices to run AWS Lambda func-
tions, execute predictions based on machine learning models with or without connec-
tion to the cloud center. Edge nodes can also integrate with third party applications but
without data sharing as in LiRA. EdgeX Foundry is another edge framework maintained
by Linux Foundation with the ambition to be a key edge/fog open source platform for
IoT applications. Data in EdgeX is only handled across layer (north-west) leaving uni-
lateral data management to a future plan. Other platforms like FIWARE FogFlow and
ETSI MEC do not make use of replicated data and thus focus more on data at the cloud,
databases, or corresponding dissemination.

LightKone D3.1(v2.0), January 15, 2019, Page 66

CHAPTER 7. ADVANCING STATE OF THE ART

7.2 CRDTs

Conflict-free Replicated Data Types (CRDTs) are data abstraction tools that can be par-
ticularly helpful in edge computing scenarios due to allowing for high availability and
autonomy by design. State of the art CRDT has been however developed mainly in
Syncfree [34] project to address the geo-replicated scenario. The designs are however
costly and incomplete on the edge. In particular, the op-based CRDTs used in Anti-
doteDB [35] were not edge-tailored and required optimizations to improve their effi-
ciency. The same holds for Pure op-based CRDTs [16] and state-based CRDTs [84]
in which meta-data has to be reduced to the fit the edge model. Furthermore, SOTA
CRDTs [7, 16, 84] can only scale to few tens of replicas which is not convenient to edge
network. We tried to address develop Handoff Counter datatype [5] with hierarchical
containment that can scale to hundreds of nodes and preserve idempotence. We plan
to support more datatypes inspiring from this approach. We addressed this challenge
through Borrow Counters [46] that allow transient nodes to join and leave the system
without losing their data. This model is planned to be extended to all datatypes in the
future deliverables. Finally, CRDTs currently assume a fixed number of replicas which
not the case of dynamic edge networks. This will also be addressed in LightKone in this
WP.

7.3 Communication support

The data management techniques and datatypes discussed in the previous two sections
assume the presence of underlying dissemination layer with properties that support gen-
eral cloud and edge applications (e.g., causality), as well as networks (e.g, scalability and
dynamicity). Despite the myriad of work in the area of causal broadcast, anti-entropy,
and distributed protocols in Erlang, most of these work do not satisfy the needs of the
data structures we developed in LightKone. We show how we advance beyond state of
the art in these areas.

7.3.1 Causal Multicast
The work on Pure op-based CRDTs assume the presence of a causal middleware that is
efficient and supports “causal stability” which is novel to SOTA causal middlewares.

Several mechanisms exist for implementing reliable causal multicast. Those proto-
cols may be implemented inside a group communication system (GCS) (e.g., Isis [19,
20], Transis [12], JGroup [74], Spread [13], JGroups [56],...). The first protocols, initi-
ated by the CBCAST [20] protocol from Birman and Joseph [20], included in each multi-
cast message its own causal history; i.e., a set of precedent messages not yet delivered in
all system processes. This led to many Subsequent designs such as Psync [81] and works
by Ladin et al. in their lazy replication proposal [59]. That was simplified when vec-
tor clocks [50, 71] were introduced, reducing the size of the multicast messages. Some
amount of causal information (the vector clocks themselves) is still kept, in proportion
of the system size. The first protocols developed for the vector-clock-based approach by
Birman et al. in [19] (anticipated by Schiper et al. [89] and Raynal et al. [85], though
for point-to-point communication) turned out to be efficient and scaled better than those

LightKone D3.1(v2.0), January 15, 2019, Page 67

CHAPTER 7. ADVANCING STATE OF THE ART

of the previous generation. Other subsequent proposals are based on this kind of causal
history information. For instance, Schiper and Pedone [91] propose a protocol for open
groups. Almeida et al. [4] propose a mechanism for bounding the size of the elements
used in version vectors. Also, Almeida et al. solution [6]: interval tree clocks (ITC),
which deals with system membership changes. The main problem of this new generation
of protocols was the length of the vector clocks. A first solution was already presented by
Birman et al. [19] and Stephenson [99]: it consisted in compacting clocks by recording
only incremental changes. Inspired in the compacting approach from [19], a more gen-
eral compacting solution was proposed by Singhal and Kshemkalyani [94]. It was later
refined and formalized by Prakash et al. [82] and Kshemkalyani and Singhal [57]. The
degree of compaction of these solutions was evaluated by Chandra et al. [29]. Another
compacting solution had been described by Mostéfaoui and Raynal [77] in 1993.

Our work on TCSB, complements the existing reliable causal multicast/broadcast
(RCB) systems: there is no ordering provided by RCB for concurrent messages, even
though the middleware can detect when messages are concurrent. We use this fact, to
allow the application, without any duplication of effort, to detect concurrency between
operations which is needed for correct semantics and behaviour. Moreover, our work im-
plements causal stability, a mechanism different than traditional stability notions, which
also allows state compaction and garbage collection.

7.3.2 Erlang distributed protocols
Despite the pervasiveness of distributed applications, runtime support for building cloud
and edge/fog tailored distributed applications remains rare, requiring application devel-
opers to build and maintain a communications framework in addition to their application
code. While not yet the norm in industry, there are some notable counter examples, all of
which are implementations of a distributed actor model; for example: Akka Cluster [2],
Microsoft Orleans [25], and Distributed Erlang [106]. Each of these frameworks enables
transparent distributed programming for the platforms they are designed for, but all three
optimize for a single type of application: low-latency, small-object messaging between
nodes in a single cluster, operating inside the data center, using the full mesh model—
which is not scalable (O(N2)) with the number of nodes in the network N. Chechina et
al. [31] identified two challenges that must be overcome in Distributed Erlang to scale to
hundreds of nodes. Specifically, (i) transitive connection sharing, and (ii) explicit process
placement.

While these changes enable Scalable Distributed Erlang to break through the scala-
bility bottleneck with global operations previously identified by Ghaffari et al. [52, 53],
scaling up to 256 nodes [30] , these solutions still assume that explicit process naming
through the global registry is desirable, from an application developer point of view. Ad-
ditionally, a node that participates in too many groups also will fall into the same trap
of replicating too much information. In LightKone, we developed a communication li-
brary called Partisan in a previous project (FP7 Syncfree [34]) that implements two group
membership protocols, i.e., Plumtree [86] and HyParView [63], that are efficient hybrid
gossip protocols. In LightKone, we developed Partisan further to support edge networks
and edge applications. In particular, we supported dynamic network topologies, many
application patterns, multiple channel sending, etc. On a lower layer, we are working
with Ericsson to develop the Distributed Erlang library to support mesh networks with

LightKone D3.1(v2.0), January 15, 2019, Page 68

CHAPTER 7. ADVANCING STATE OF THE ART

routing instead of relying on full connected mesh doomed unscalable (the number of
connections in the cluster grows N2 with the number of nodes).

7.3.3 Anti-entropy
In the context of anti-entropy gossip protocols, Scuttlebutt [103] proposes a push-pull al-
gorithm to be used to synchronize a set of values between participants, but considers each
value as opaque, and does not try to represent recent changes to these values as deltas.
Other solutions try to minimize the communication overhead of anti-entropy gossip-
based protocols by exploiting either hash functions [40] or a combination of Bloom
filters, Merkle trees, and Patricia tries [24]. Still, these solutions require a significant
number of message exchanges to identify the source of divergence between the state of
two processes. Additionally, these solutions might incur significant processing overhead
due to the need of computing hash functions and manipulating complex data structures,
such as Merkle trees.

Our work on state synchronization is inspired by rsync [102] that synchronizes two
files placed on different machines, by generating file block signatures, and using these
signatures to identify the missing blocks on the backup file. In this strategy, there’s a
trade-off between the size of the blocks to be signed, the number of signatures to be sent,
and size of the blocks to be received: bigger blocks to be signed implies fewer signatures
to be sent, but the blocks received (deltas) can be bigger than necessary. Inspired by
rsync, Xdelta [69] computes a difference between two files, taking advantage of the fact
that both files are present. Consequently the cost of sending signatures can be ignored
and the produced deltas are optimized.

7.4 Partial and Non-uniform Replication

Full replication protocols as in [9, 41, 66, 67, 70, 87, 105] can improve the reliability
and availability of systems through making redundant data available across all replicas
and thus allowing applications to share data. Updates are however costly and complex as
described above. Partial replication [10, 37, 90, 101] addresses the issues of high update
latency in full replication by having each replica store only part of the data. However,
ensuring applications invariants remains a challenge. Among the several invariants that
may be enforced, ensuring that updates are applied and made visible respecting causality
has emerged as a key ingredient among the many consistency criteria and client session
guarantees that have been proposed and implemented in the last decade.

Previous solutions either favor throughput by compressing metadata into a single
scalar [42], penalizing remote visibility latency; or favor remote visibility latency by
using more precise ways of tracking causality: using more metadata that usually is not
constant but dependent on the number of objects [66, 67], or the number of datacenters
[3, 111]. Saturn [22] is a metadata service we developed to efficiently ensure causal
consistency across geo-locations and keeps the size of the metadata small and constant.
Saturn allows data services to fully benefit from partial replication, by implementing
genuine partial replication, requiring heavy edge nodes to manage only the data and the
metadata concerning data items replicated locally. When adopting partial replication,
each replica only maintains part of the data. As a consequence, each replica can only

LightKone D3.1(v2.0), January 15, 2019, Page 69

CHAPTER 7. ADVANCING STATE OF THE ART

locally process a subset of the database queries.
In a replicated scenarios, where a server only maintains part of the data, for exe-

cuting a query it might be necessary to contact one or more remote replica, leading to
high latency for executing operations. In edge scenarios, where edge replica necessarily
maintain only a subset of the data, this problems becomes more important. In this report,
nonuniform replication is proposed as an alternative partial replication model where each
replica maintains only part of the data but can process all queries. The key insight is that
for some data objects, not all data is necessary for providing the result of read operations.
On the other hand, state of the art replication protocols cannot solve this problems as they
either enforce strong consistency [36, 70, 76], weak consistency [9, 39, 66, 67, 105] or
a mix of these consistency models [65, 97]. However, our work combines non-uniform
replication with eventual consistency to improve the availability of the system, thanks to
CRDTs. In our work, we formalized the concept of non-uniform replication; applied the
model to replicated systems that provide eventual consistency; derived sufficient condi-
tions for providing non-uniform eventual consistency; and defined CRDTs that adopt the
non-uniform replication model.

LightKone D3.1(v2.0), January 15, 2019, Page 70

Chapter 8

Exploratory Research

In this chapter, we present the research exploratory work that is related but not at the
core of LightKone. These works have the potential of more exploration or inspiration
in the future. For instance, the Single-Writer principle discusses the cases where some
CRDTs may not incur concurrency. On the other hand, we include two security works for
Privacy-aware IoT Data Management at the light edge and Byzantine resilient protocol
for heavy and possibly light edge.

8.1 The Single-Writer Principle in CRDT Composition

Obtaining more powerful CRDTs by composition of more basic ones has been addressed
in various ways, one example being the causal CRDTs [7] such as maps, in which the
values are themselves CRDTs. In such generic compositions, each individual component
must be designed in a way that it may be updated by multiple participants. However,
there are usage scenarios where each component is semantically tied to a given partici-
pant, which is the sole updater. One example is Doodle1, an online scheduling tool for
meetings, used by a group of people to decide on a date. Each participant selects a set
of desirable dates and Doodle aggregates the responses from all participants, finding the
dates that will work best for everyone. In this scenario, each participant changes its own
value in the scheduling page, adding or removing dates. Using current general CRDT
designs (e.g., a map from participants to sets) is unnecessarily complex, as it does not ex-
ploit this single-writer scenario, where conflicting operations over each component will
never occur. The single-writer principle in concurrent programming, where each register
is only written by a single process, is a powerful concept, leading to simplifications or
elegant designs, as the classic Bakery algorithm [60].

In [45] we show how the single-writer principle can be used to construct a new class
of CRDTs in which conflicting updates never occur by design. We also define a generic
collection of single-writer versioned objects along with two concrete collections. While
this construction is classic in many systems and can be already found in the design of
some flavors of CRDT counters, it was hidden inside specific implementations. Making
this pattern an explicit composition construct, that can be used to make CRDTs from
any sequential data-type, provides a new tool for safe construction of complex CRDT
compositions.

1https://doodle.com

71

https://doodle.com

CHAPTER 8. EXPLORATORY RESEARCH

8.2 Security for the Edge

8.2.1 Privacy-aware IoT Data Management

IoT devices nowadays employ a “cloud-first” approach with all the collected sensor data
being sent directly to the cloud of service provider for further processing and storage.
Despite the benefits such cloud-based approach provides, the continuous data collection
and retention in the cloud can have potentially negative consequences for the end users.
First of all, the sensor data might be too sensitive to be processed remotely without the
user awareness and control. For instance, IP camera video feed can expose the personal
life of the users to unauthorized parties, and even simple electricity meter readings can
reveal users’ timetable and the home appliances they own. Secondly, service providers
can share sensitive user data with third parties or use these data for targeted advertisement
without the user’s consent. Finally, the end users often have little or no knowledge of what
data are actually being collected by the devices they own and how these data can later
be used. They are thus forced to blindly trust the service provider with their sensitive
information, which raises concerns and fears over data privacy.

To address the rising privacy concerns of the IoT users, an edge computing model
was recently proposed [21], which aims to bring data processing closer to the user and the
edge of the network. Such approach allows to minimize the volume of IoT-generated data
flowing to the data center, reduce the network load by aggregating the data at the edge,
and improve the user experience and application performance through a lower latency
and response time. But most importantly, such approach allows for a better data privacy,
since raw sensor data are processed “in-house” under the control of the end user. The
edge node therefore has to be designed in a way to provide the data privacy guarantees
and offer a flexible platform for service logic execution.

To address the consequences of ever growing number of IoT devices and the amount
of traffic they generate, an edge computing model was recently proposed [21], which aims
to bring data processing closer to the edge of the network. In this model, edge nodes with
sufficient storage and computational capabilities are placed closer to the deployed IoT
devices. These nodes perform local data processing and storage and send the results of
the computation to the cloud of service provider for further processing and aggregation if
needed. Such approach allows to minimize the volume of IoT-generated data flowing to
the data center, reduce the network load by aggregating the data at the edge, and improve
the user experience and application performance through a lower latency and response
time. But most importantly, such approach allows for a better data privacy, since raw
sensor data are processed “in-house” under the control of the end user. The edge node
therefore has to be designed in a way to provide the data privacy guarantees and offer a
flexible platform for service logic execution.

Over the last few years, multiple designs of IoT edge nodes, or hubs, have been pro-
posed. Some of these offer a way to control how the sensor data is collected, processed,
and shared by service providers, and allow to block operations that can result in privacy
breaches [38, 49, 108]. This is done either by inspecting the data flow from IoT sensors
to the data center in the cloud (variation of taint tracking or context analysis), or by pro-
viding a secure sandbox environment and limiting the scope of data operations. While
these systems offer a better control over the sensitive user data, they often suffer from
overtainting issues that lead to false-positives or even false-negatives allowing malicious

LightKone D3.1(v2.0), January 15, 2019, Page 72

CHAPTER 8. EXPLORATORY RESEARCH

data flows to exist unnoticed. Furthermore, a limited set of data processing operations
might not be flexible enough for various IoT scenarios.

Considering the limitations of the existing solutions, we propose HomePad [109] -
a privacy-aware IoT hub that allows for a fine-grained control over the sensitive IoT
data. Similarly to commercially available IoT hubs it provides a platform for execution
of third-party apps that can interact with IoT devices and offer a certain service. The
difference comes from the way these apps are written and executed. HomePad apps use
a HomePad API to access and process the sensor data, and run in a confined environment
which prevents any sensitive data leakage.

In HomePad, applications are implemented as a directed graph of elements. An el-
ement is an instance of a function that runs in isolation from other elements. Such an
element-based structure allows to represent any application as a graph of elements it con-
sists of. Such an approach forces application developers to make both all internal data
flows and data transformations within their applications explicit. As a result, HomePad
contributes to making applications more transparent with respect to how they access and
process user data. Since every API element performs a certain function with the prede-
fined input and output data types, it is possible to trace the flow of specific sensor data
within the application’s graph.

Furthermore, HomePad goes beyond existing IoT hub solutions by allowing the user
to check automatically whether a given application satisfies his or her privacy require-
ments at install time. Graph-based application representation allows to analyze the sen-
sor data flow within the app from a certain source (e.g. a frame from an IP camera) to a
certain sink (e.g. module that issues HTTP network requests).

The installation of applications found to be violating the user privacy will be halted
and the information about that will be added to the final report provided to the user.
This report will contain an information about the sensitive sensor data an application
has access to, the operations it performs and, most importantly, whether the application
violates any of the privacy policies. The main goal of the application verification process
is to make users aware of how their sensor data is accessed and processed, and eventually
prevent the installation of applications that the user may deem to be too privacy-invasive.

Considering that some IoT scenarios require access to substantial computation and
storage resources that are often not available at the edge, we further extended the Home-
Pad’s functionality to the private cloud of the user or a trusted service provider. For that,
HomePad relies on Intel Software Guard Extensions (SGX) [1] secure enclave to ensure
confidentiality and integrity of the sensor data.

We implemented a prototype of HomePad and used it to build several use case ap-
plications. From our evaluation of the system, we found that HomePad was able to
effectively detect illegitimate data flows and incurs low performance overhead.

8.2.2 As Secure as Possible Eventual consistency
Available/Partition-tolerant systems favor availability over strong consistency and thus
exhibit one or more variants of (relaxed) eventual consistency (EC) models. However, in
literature, such systems often consider the fault-recovery model and thus cannot handle
arbitrary or malicious faults. In this work, we introduced a new protocol [93] that in-
tegrates eventual consistent systems with a Byzantine Fault Tolerance cluster [27]. The
system is designed to respect the essence of eventual consistency: availability is always

LightKone D3.1(v2.0), January 15, 2019, Page 73

CHAPTER 8. EXPLORATORY RESEARCH

favored over security—which is done in the background—unless the client chooses oth-
erwise. The protocol currently targets the heavy edge network whereas future work will
investigate its feasibility on light edge.

The context Replicated services that are built through EC are highly available since
client’s requests are served via a local application server (or replica) without immediate
synchronization with other servers; this step is however performed in the background
to avoid blocking of client requests, but still ensure (eventual) data convergence. State-
of-the-art research in EC assumes that replicas can crash and recover back to the last
“healthy” state. Unfortunately, there is evidence that malicious and arbitrary (a.k.a.,
Byzantine [62]) faults are not rare even in leading Internet services [104]. In the case
of EC, a Byzantine server can apply operations in an incorrect way (deliberately or
not) which hampers data convergence, and thus compromises the entire service. Con-
sequently, secure EC solutions that are resilient to Byzantine faults, being the strongest
fault model [27], are highly advocated when the deployment conditions of servers and
clients creates risk for this class of faults.

Why current solutions fall short? Classical BFT state-machine replication protocols
protocols [27] cannot simply solve the EC problem due to two main reasons. The first
is that such protocols are often blocking to the clients since total order coordination is
required per operation. The second reason is that replicas are considered correct (i.e., not
Byzantine) as long as all replies match; i.e., it requires that replies are exactly equivalent.
In a recent work [28], the authors tried to solve the latter case by allowing a replica to
immediately execute a request, without first establishing a total order, whereas Byzan-
tine agreement between replicas is used, either periodically or on-demand, to establish
a common state synchronization point as well as to identify the set of individual oper-
ations needed to resolve conflicts. Meanwhile, the client must wait for enough replies
from a majority of replicas (after Byzantine agreement is achieved) to commit a reply,
which is clearly blocking and impose high delays under network partitions or high la-
tency. Another major issue is that servers may stop receiving new requests until Byzan-
tine agreement among servers is achieved to withstand a Byzantine client. We believe
that this is impractical in scenarios where eventual consistency was selected to not forfeit
availability.

The proposed protocol In this paper a protocol that makes eventual consistency “as
secure as possible”, without impact on system’s availability nor requiring a significant
modification to an already deployed system. The protocol allows the service to run in an
eventually consistent manner whereas Byzantine behaviors are detected off the critical
path, in a back-end process, with the help of a black-box BFT cluster. In particular, and
as described in Fig. 8.2.1, client’s requests are served by an associated application server
as they arrive without immediate synchronization with other servers, which is done in the
background and eventually leading to data convergence. Decoupled form this front-end
logic, a server progressively sends consistent data offsets to the BFT cluster to be matched
against similar versions of other servers, thus forming a “certificate”: a signed proof that
up to this very offset, data is equivalent on an appropriate majority of non Byzantine
application servers. The client progressively receives the most recent certificate along

LightKone D3.1(v2.0), January 15, 2019, Page 74

CHAPTER 8. EXPLORATORY RESEARCH

S1

BFT Proxy

EC

S2

BFT Proxy

EC

S3

BFT Proxy

EC

S4

BFT Proxy

EC

Clients Clients Clients Clients

B3
B2 B4

B1
Loose

Strong

BFT Cluster

Front-end

Back-end

RCB RCB RCB

Figure 8.2.1: The system model showing how a consistent offset is always verified
through the BFT cluster (back-end) without hindering clients access to application
servers S j (front-end) through eventual consistency. Si are loosely coupled via a Reli-
able Causal Broadcast (RCB).

the replies of the associated server. This allows the client to verify the validity of the
certificate; otherwise, it may switch to another server if it holds a proof (basically an
invalid certificate) of detecting a Byzantine server, or if the certificate is not sufficiently
up to date (which is verified through the other servers as well).

Discussion and future work One may argue that our solution is not sufficiently secure
as clients can receive non certified data. While this is true, the client will be able to
progressively detect any misbehaviors once the consistent data offset evolves. In our
opinion, adopting more secure solutions like fault prevention or hiding will impose extra
delays as it is done in the critical path, whereas our solution is accountable for Byzantine
faults without impacting availability. We believe that in the same sense that the adopters
of EC trade strong consistency — despite being a correctness property — for availability,
they will likely be keen to trade high security in favor of high availability. What supports
our argument is that current EC solutions in production still run in the wild without such
Byzantine guarantees; and therefore, they may be less reluctant to adopt secure solutions
like ours provided that availability is not compromised.

The solution we introduce is interesting for both: service and applications. On the
service side, our solution is important as it guarantees convergence despite the presence
of Byzantine servers or clients, which is not possible in current EC systems. On the appli-
cation side, it is interesting due to its flexibility through allowing a spectrum of options:
A non sensitive client can proceed with operations without checking the certificate (i.e.,
as current systems do), whereas a very conservative client can only accept read opera-
tions from a certified consistent data (on the expense of stale data); a trade-off option is
to accept a limited number of operations ahead the certified data as long as they will be
verified in the future and can be rolled back.

We describe a short version of the protocol in [93]; while at the meantime, we are
implementing a prototype of the protocol to perform an empirical evaluation to assess
the usefulness and feasibility of our approach.

LightKone D3.1(v2.0), January 15, 2019, Page 75

CHAPTER 8. EXPLORATORY RESEARCH

LightKone D3.1(v2.0), January 15, 2019, Page 76

Chapter 9

Annotated Publications &
Dissemination

9.1 Publications
We present a list of the scientific papers and reports where the work towards D3.1 has
been presented:

• Nuno Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-free replicated data
types. To appear in Encyclopedia of Big Data Technologies, 2018.

• Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure operation-based
replicated data types. CoRR, abs/1710.04469, 2017.
Abstract
Distributed systems designed to serve clients across the world often make use of
geo-replication to attain low latency and high availability. Conflict-free Replicated
Data Types (CRDTs) allow the design of predictable multi-master replication and
support eventual consistency of replicas that are allowed to transiently diverge.
CRDTs come in two flavors: state-based, where a state is changed locally and
shipped and merged into other replicas; operation-based, where operations are
issued locally and reliably causal broadcast to all other replicas. However, the
standard definition of op-based CRDTs is very encompassing, allowing even send-
ing the full-state, and thus imposing storage and dissemination overheads as well
as blurring the distinction from state-based CRDTs. We introduce pure op-based
CRDTs, that can only send operations to other replicas, drawing a clear distinc-
tion from state-based ones. Data types with commutative operations can be triv-
ially implemented as pure op-based CRDTs using standard reliable causal delivery;
whereas data types having non-commutative operations are implemented using a
PO-Log, a partially ordered log of operations, and making use of an extended API,
i.e., a Tagged Causal Stable Broadcast (TCSB), that provides extra causality infor-
mation upon delivery and later informs when delivered messages become causally
stable, allowing further PO-Log compaction. The framework is illustrated by a cat-
alog of pure op-based specifications for classic CRDTs, including counters, multi-
value registers, add-wins and remove-wins sets.

• Manuel Bravo, Luı́s Rodrigues, and Peter Van Roy. Saturn: A Distributed Meta-

77

CHAPTER 9. ANNOTATED PUBLICATIONS & DISSEMINATION

data Service for Causal Consistency. EuroSys, 2017.
Abstract
This paper presents the design, implementation, and evaluation of Saturn, a meta-
data service for geo-replicated systems. Saturn can be used in combination with
several distributed and replicated data services to ensure that remote operations are
made visible in an order that respects causality, a requirement central to many con-
sistency criteria. Saturn addresses two key unsolved problems inherent to previous
approaches. First, it eliminates the tradeoff between throughput and data freshness,
when deciding what metadata to use for tracking causality. Second, it enables gen-
uine partial replication, a key property to ensure scalability when the number of
geo-locations increases. Saturn addresses these challenges while keeping metadata
size constant, independently of the number of clients, servers, data partitions, and
locations. By decoupling metadata management from data dissemination, and by
using clever metadata propagation techniques, it ensures that the throughput and
visibility latency of updates on a given item are (mostly) shielded from operations
on other items or locations. We evaluate Saturn in Amazon EC2 using realistic
benchmarks under both full and partial geo-replication. Results show that weakly
consistent datastores can lean on Saturn to upgrade their consistency guarantees to
causal consistency with a negligible penalty on performance.

• Gonçalo Cabrita and Nuno M. Preguiça. Non-uniform replication. In Proceedings
of OPODIS 2017, 2017.
Abstract
Replication is a key technique in the design of efficient and reliable distributed
systems. As information grows, it becomes difficult or even impossible to store
all information at every replica. A common approach to deal with this problem is
to rely on partial replication, where each replica maintains only a part of the total
system information. As a consequence, a remote replica might need to be contacted
for computing the reply to some given query, which leads to high latency costs
particularly in geo-replicated settings. In this work, we introduce the concept of
nonuniform replication, where each replica stores only part of the information, but
where all replicas store enough information to answer every query. We apply this
concept to eventual consistency and conflict-free replicated data types. We show
that this model can address useful problems and present two data types that solve
such problems. Our evaluation shows that non-uniform replication is more efficient
than traditional replication, using less storage space and network bandwidth.

• Vitor Enes. Efficient Synchronization of State-based CRDTs. Masters thesis. Uni-
versidade do Minho. 2017.
Abstract
To ensure high availability in large scale distributed systems, Conflict-free Repli-
cated Data Types (CRDTs) relax consistency by allowing immediate query and up-
date operations at the local replica, with no need for remote synchronization. State-
based CRDTs synchronize replicas by periodically sending their full state to other
replicas, which can become extremely costly as the CRDT state grows. Delta-based
CRDTs address this problem by producing small incremental states (deltas) to be
used in synchronization instead of the full state. However, current synchronisation
algorithms for Delta-based CRDTs induce redundant wasteful delta propagation,

LightKone D3.1(v2.0), January 15, 2019, Page 78

CHAPTER 9. ANNOTATED PUBLICATIONS & DISSEMINATION

performing worse than expected, and surprisingly, no better than State-based. In
this paper we: 1) identify two sources of inefficiency in current synchronization
algorithms for delta-based CRDTs; 2) bring the concept of join decomposition to
state-based CRDTs; 3) exploit join decompositions to obtain optimal deltas and 4)
improve the efficiency of synchronization algorithms; and finally, 5) evaluate the
improved algorithms.

• Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta State Replicated
Data Types. Journal of Parallel Distributed Computing. 2018.
Abstract
Conflict-free Replicated Data Types (CRDTs) are distributed data types that make
eventual consistency of a distributed object possible and non ad-hoc. Specif-
ically, state-based CRDTs ensure convergence through disseminating the entire
state, that may be large, and merging it to other replicas. We introduce Delta
State Conflict-Free Replicated Data Types (δ −CRDT) that can achieve the best of
both operation-based and state-based CRDTs: small messages with an incremental
nature, as in operation-based CRDTs, disseminated over unreliable communica-
tion channels, as in traditional state-based CRDTs. This is achieved by defining
δ −mutators to return a delta-state, typically with a much smaller size than the
full state, that to be joined with both local and remote states. We introduce the
δ −CRDT framework, and we explain it through establishing a correspondence to
current state-based CRDTs. In addition, we present an anti-entropy algorithm for
eventual convergence, and another one that ensures causal consistency. Finally, we
introduce several δ−CRDT specifications of both well-known replicated datatypes
and novel datatypes, including a generic map composition.

• Paulo Sérgio Almeida and Carlos Baquero. Scalable eventually consistent counters
over unreliable networks. Journal of Distributed Computing. 2018.
Abstract
Counters are an important abstraction in distributed computing, and play a central
role in large scale geo-replicated systems, counting events such as web page im-
pressions or social network “likes”. Classic distributed counters, strongly consis-
tent via linearisability or sequential consistency, cannot be made both available and
partition-tolerant, due to the CAP Theorem, being unsuitable to large scale scenar-
ios. This paper defines Eventually Consistent Distributed Counters (ECDCs) and
presents an implementation of the concept, Handoff Counters, that is scalable and
works over unreliable networks. By giving up the total operation ordering in clas-
sic distributed counters, ECDC implementations can be made AP in the CAP de-
sign space, while retaining the essence of counting. Handoff Counters are the first
Conflict-free Replicated Data Type (CRDT) based mechanism that overcomes the
identity explosion problem in naive CRDTs, such as G-Counters (where state size
is linear in the number of independent actors that ever incremented the counter),
by managing identities towards avoiding global propagation and garbage collect-
ing temporary entries. The approach used in Handoff Counters is not restricted to
counters, being more generally applicable to other data types with associative and
commutative operations.

• Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and João Leitão. Borrowing

LightKone D3.1(v2.0), January 15, 2019, Page 79

CHAPTER 9. ANNOTATED PUBLICATIONS & DISSEMINATION

an Identity for a Distributed Counter. PaPoC’17, 2017.
Abstract Conflict-free Replicated Data Types (CRDTs) are data abstractions (regis-
ters, counters, sets, maps, among others) that provide a relaxed consistency model
called Eventual Consistency. Current designs for CRDT counters do not scale,
having a size linear with the number of both active and retired nodes (i.e., nodes
that leave the system permanently after previously manipulating the value of the
counter). In this paper we present a new counter design called Borrow-Counter,
that provides a mechanism for the retirement of transient nodes, keeping the size
of the counter linear with the number of active nodes.

• Ali Shoker, Houssam Yactine, and Carlos Baquero. As Secure As Possible Even-
tual Consistency. PaPoC ’17, 2017.
Abstract
Eventual consistency (EC) is a relaxed data consistency model that, driven by
the CAP theorem, trades prompt consistency for high availability. Although, this
model has shown to be promising and greatly adopted by industry, the state of the
art only assumes that replicas can crash and recover. However, a Byzantine replica
(i.e., arbitrary or malicious) can hamper the eventual convergence of replicas to a
global consistent state, thus compromising the entire service. Classical BFT state
machine replication protocols cannot solve this problem due to the blocking nature
of consensus, something at odd with the availability via replica divergence in the
EC model. In this work in progress paper, we introduce a new secure highly avail-
able protocol for the EC model that assumes a fraction of replicas and any client
can be Byzantine. To respect the essence of EC, the protocol gives priority to high
availability, and thus Byzantine detection is performed off the critical path on a
consistent data offset. The paper concisely explains the protocol and discusses its
feasibility. We aim at presenting a more comprehensive and empirical study in the
future.

• Vitor Enes, Paulo Sérgio Almeida and Carlos Baquero. The Single-Writer Princi-
ple in CRDT Composition. PMLDC, ECOOP, 2017.
Abstract
Multi-master replication in a distributed system setting allows each node holding
a replica to update and query the local replica, and disseminate updates to other
nodes. Obtaining high availability typically entails allowing replicas to diverge
and requires a background mechanism for re-establishing consistency. Conflict-
free Replicated Data Types (CRDTs) extend standard sequential data-types with
appropriate merge functions, and often can be composed together to create more
complex ones. In this work we add a generic CRDT composition approach that ex-
plores the single-writer principle. By carefully controlling which part of the com-
position can be updated by each replica, we can derive efficient designs that cover
new use-cases. After introducing the new construction we exemplify some uses,
including how to emulate a simple Doodle functionality for selecting a common
meeting schedule among different participants.

• Georges Younes, Paulo Sérgio Almeida and Carlos Baquero. Compact Resettable
Counters through Causal Stability. PaPoC, 2017.
Abstract

LightKone D3.1(v2.0), January 15, 2019, Page 80

CHAPTER 9. ANNOTATED PUBLICATIONS & DISSEMINATION

Conflict-free Data Types (CRDTs) were designed to automatically resolve con-
flicts in eventually consistent systems. Different CRDTs were designed in both
operation-based and state-based flavors such as Counters, Sets, Registers, Maps,
etc. In a previous paper [2], Baquero et al. presented the problem with embedded
CRDT counters and a solution, covering state-based counters that can be embed-
ded in maps, but needing an ad-hoc extension to the standard counter API. Here,
we present a resettable operation-based counter design, with the standard simple
API and small state, through a causal-stability-based state compaction.

9.2 Dissemination
• Peer Stritzinger. Fixing Erlang’s Distribution Protocol. Erlang User Conference

2017, Stockholm, Sweden, June 8-9, 2017. See: https://youtu.be/CVpcrYH18NE.

• Peer Stritzinger. Robotics and Sensors Using Erlang on Embedded Systems with
GRiSP. CodeMesh 2017, London, UK, Nov. 7-9, 2017.

• Ali Shoker. There are no BFT Fans Anymore ... About Secure Eventual Consis-
tency. Curry On!, Barcelona, Spain, June 2017.

LightKone D3.1(v2.0), January 15, 2019, Page 81

CHAPTER 9. ANNOTATED PUBLICATIONS & DISSEMINATION

LightKone D3.1(v2.0), January 15, 2019, Page 82

Bibliography

[1] Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-us/
sgx.

[2] Akka Documentation: Cluster, 2017. https://doc.akka.io/docs/akka/2.5/
index-cluster.html.

[3] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro. Cure: Strong semantics meets high availability
and low latency. In Proceeding of the IEEE 36th International Conference on
Distributed Computing Systems, ICDCS’16, pages 405–414, Nara, Japan, 2016.

[4] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded ver-
sion vectors. In Rachid Guerraoui, editor, Distributed Computing, pages 102–116,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[5] P. S. Almeida and C. Baquero. Scalable eventually consistent counters over unre-
liable networks. Distributed Computing, 2018.

[6] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree clocks.
In Theodore P. Baker, Alain Bui, and Sébastien Tixeuil, editors, Principles of
Distributed Systems, pages 259–274, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[7] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta State Replicated
Data Types. J. Parallel Distrib. Comput., 111:162–173, 2018.

[8] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data
types. J. Parallel Distrib. Comput., 111:162–173, 2018.

[9] Sérgio Almeida, João Leitão, and Luı́s Rodrigues. ChainReaction: A Causal+
Consistent Datastore Based on Chain Replication. In Proc. 8th ACM European
Conference on Computer Systems, EuroSys ’13, 2013.

[10] Gustavo Alonso. Partial database replication and group communication primitives.
In Proc. European Research Seminar on Advances in Distributed Systems, 1997.

[11] Amazon. Amazon IoT Greengrass reference architecture, 2018. https://aws.
amazon.com/greengrass/.

83

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://doc.akka.io/docs/akka/2.5/index-cluster.html
https://doc.akka.io/docs/akka/2.5/index-cluster.html
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/

BIBLIOGRAPHY

[12] Yair Amir, Danny Dolev, S. Kramer, and D. Malki. Transis: A communication
subsystem for high availability. In Proceedings of the 22nd International Sym-
posium on Fault Tolerant Computing, pages 76–84, Boston, Massachusetts, 1992.
IEEE Computer Society Press.

[13] Yair Amir and Jonathan Stanton. The spread wide area group communication
system. 2007.

[14] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno M.
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back into
eventual consistency. In Laurent Réveillère, Tim Harris, and Maurice Herlihy,
editors, Proceedings of the Tenth European Conference on Computer Systems, Eu-
roSys 2015, Bordeaux, France, April 21-24, 2015, pages 6:1–6:16. ACM, 2015.

[15] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Ro-
drigo Rodrigues, and Nuno M. Preguiça. Extending eventually consistent cloud
databases for enforcing numeric invariants. In 34th IEEE Symposium on Reliable
Distributed Systems, SRDS 2015, Montreal, QC, Canada, September 28 - October
1, 2015, pages 31–36. IEEE Computer Society, 2015.

[16] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based
crdts operation-based. In Distributed Applications and Interoperable Systems -
14th IFIP WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th
International Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, pages 126–140, 2014.

[17] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure operation-based
replicated data types. CoRR, abs/1710.04469, 2017.

[18] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems (TOCS),
9(3):272–314, 1991.

[19] Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Trans. Comput. Syst., 9(3):272–314, August 1991.

[20] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the pres-
ence of failures. ACM Trans. Comput. Syst., 5(1):47–76, January 1987.

[21] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proc. of MCC, 2012.

[22] Manuel Bravo, Luı́s Rodrigues, and Peter Van Roy. Saturn: a distributed metadata
service for causal consistency. In Proceedings of the Twelfth European Conference
on Computer Systems, pages 111–126. ACM, 2017.

[23] Eric Brewer. On a certain freedom: exploring the CAP space. Invited talk at
PODC 2010, Zurich, Switzerland, July 2010.

[24] J. Byers, J. Considine, and M. Mitzenmacher. Fast Approximate Reconciliation of
Set Differences. Technical report, CS Dept., Boston University, 2002.

LightKone D3.1(v2.0), January 15, 2019, Page 84

BIBLIOGRAPHY

[25] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya, and Jorgen
Thelin. Orleans: cloud computing for everyone. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 16. ACM, 2011.

[26] Gonçalo Cabrita and Nuno M. Preguiça. Non-Uniform Replication. In Proceed-
ings of the 21st International Conference on Principles of Distributed Systems,
OPODIS 2017, pages 24:1–24:19. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, December 2017.

[27] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst., 20(4):398–461, November 2002.

[28] Hua Chai and Wenbing Zhao. Byzantine fault tolerance for services with com-
mutative operations. In Proceedings of the 2014 IEEE International Conference
on Services Computing, SCC ’14, pages 219–226, Washington, DC, USA, 2014.
IEEE Computer Society.

[29] Punit Chandra, Pranav Gambhire, and Ajay Kshemkalyani. Performance of the
optimal causal multicast algorithm: A statistical analysis. Parallel and Distributed
Systems, IEEE Transactions on, 15:40– 52, 02 2004.

[30] Natalia Chechina, Kenneth MacKenzie, Simon Thompson, Phil Trinder, Olivier
Boudeville, Viktória Fördős, Csaba Hoch, Amir Ghaffari, and Mario Moro Her-
nandez. Evaluating scalable distributed erlang for scalability and reliability. IEEE
Transactions on Parallel and Distributed Systems, 28(8):2244–2257, 2017.

[31] Natalia Chechina, Phil Trinder, Amir Ghaffari, Rickard Green, Kenneth Lundin,
and Robert Virding. The design of scalable distributed erlang. In DRAFT PRO-
CEEDINGS OF THE 24TH SYMPOSIUM ON IMPLEMENTATION AND APPLI-
CATION OF FUNCTIONAL LANGUAGES (IFL 2012), page 461.

[32] Edge Computing Consortium and Alliance of Industrial Internet. ECC Refer-
ence Architecture, 2018. http://en.ecconsortium.net/Uploads/file/20180328/
1522232376480704.pdf.

[33] Open Fog Consortium. OpenFog Reference Architecture, 2017. https:
//www.openfogconsortium.org/wp-content/uploads/OpenFog Reference
Architecture 2 09 17-FINAL.pdf.

[34] The Syncfree Consortium. FP7 SyncFree Project, 2017. https://syncfree.lip6.fr.

[35] The Syncfree Consortium. Antidote db, 2018. http://syncfree.github.io/
antidote/.

[36] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Tay-
lor, Ruth Wang, and Dale Woodford. Spanner: Google’s Globally-distributed

LightKone D3.1(v2.0), January 15, 2019, Page 85

http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf
http://en.ecconsortium.net/Uploads/file/20180328/1522232376480704.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://syncfree.lip6.fr
http://syncfree.github.io/antidote/
http://syncfree.github.io/antidote/

BIBLIOGRAPHY

Database. In Proc. 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, 2012.

[37] Tyler Crain and Marc Shapiro. Designing a Causally Consistent Protocol for Geo-
distributed Partial Replication. In Proc. 1st Workshop on Principles and Practice
of Consistency for Distributed Data, PaPoC ’15, 2015.

[38] Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon
Amos. Privacy Mediators: Helping IoT Cross the Chasm. In Proc. of HotMobile,
2016.

[39] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store. In
Proc. 21st ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
2007.

[40] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Repli-
cated Database Maintenance. In PODC, 1987.

[41] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Repli-
cated Database Maintenance. In Proc. 6th Annual ACM Symposium on Principles
of Distributed Computing, PODC ’87, 1987.

[42] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Gentlerain:
Cheap and scalable causal consistency with physical clocks. In Proceedings of the
5th ACM Symposium on Cloud Computing, SOCC ’14, pages 4:1–4:13, Seattle,
WA, USA, 2014.

[43] Thomas Eisenbarth and Sandeep Kumar. A survey of lightweight-cryptography
implementations. IEEE Design & Test of Computers, 24(6), 2007.

[44] Vitor Enes. Efficient Synchronization of State-based CRDTs. Master’s thesis,
Universidade do Minho, 2017.

[45] Vitor Enes, Paulo Sérgio Almeida, and Carlos Baquero. The Single-Writer Prin-
ciple in CRDT Composition. In Second Workshop on Programming Models
and Languages for Distributed Computing, PMLDC@ECOOP 2017, Barcelona,
Spain, June 20, 2017.

[46] Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and João Leitão. Borrowing
an Identity for a Distributed Counter: Work in Progress Report. In Proceedings
of the 3rd International Workshop on Principles and Practice of Consistency for
Distributed Data, PaPoC’17, pages 4:1–4:3. ACM, 2017.

[47] Daniel Engels, Xinxin Fan, Guang Gong, Honggang Hu, and Eric M Smith. Hum-
mingbird: ultra-lightweight cryptography for resource-constrained devices. In In-
ternational Conference on Financial Cryptography and Data Security, pages 3–
18. Springer, 2010.

LightKone D3.1(v2.0), January 15, 2019, Page 86

BIBLIOGRAPHY

[48] ETSI. MEC Reference Architecture, 2018. https://www.etsi.org/.

[49] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks. In Proc. of USENIX Security, 2016.

[50] C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. Proceedings of the 11th Australian Computer Science Conference,
10(1):56–66, 1988.

[51] Linux Foundation. EdgeX Foundry Reference Architecture, 2018. https://docs.
edgexfoundry.org/Ch-Architecture.html.

[52] Amir Ghaffari. Investigating the scalability limits of distributed erlang. In Pro-
ceedings of the Thirteenth ACM SIGPLAN workshop on Erlang, pages 43–49.
ACM, 2014.

[53] Amir Ghaffari, Natalia Chechina, Phil Trinder, and Jon Meredith. Scalable persis-
tent storage for erlang: Theory and practice. In Proceedings of the twelfth ACM
SIGPLAN workshop on Erlang, pages 73–74. ACM, 2013.

[54] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[55] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. The cost
of a cloud: research problems in data center networks. ACM SIGCOMM computer
communication review, 39(1):68–73, 2008.

[56] JGroups. a toolkit for reliable multicast communication, 2002.

[57] Ajay D. Kshemkalyani and Mukesh Singhal. Necessary and sufficient conditions
on information for causal message ordering and their optimal implementation.
Distrib. Comput., 11(2):91–111, April 1998.

[58] Sandeep S. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and
Marcelo Leone. Logical physical clocks. In Marcos K. Aguilera, Leonardo Quer-
zoni, and Marc Shapiro, editors, Principles of Distributed Systems - 18th Inter-
national Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December 16-19,
2014. Proceedings, volume 8878 of Lecture Notes in Computer Science, pages
17–32. Springer, 2014.

[59] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing
high availability using lazy replication. ACM Trans. Comput. Syst., 10(4):360–
391, November 1992.

[60] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.
Commun. ACM, 17(8), 1974.

[61] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

LightKone D3.1(v2.0), January 15, 2019, Page 87

https://www.etsi.org/
https://docs.edgexfoundry.org/Ch-Architecture.html
https://docs.edgexfoundry.org/Ch-Architecture.html

BIBLIOGRAPHY

[62] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[63] João Leitão, José Pereira, and Luis Rodrigues. HyParView: A membership pro-
tocol for reliable gossip-based broadcast. In Dependable Systems and Networks,
2007. DSN’07. 37th Annual IEEE/IFIP International Conference on, pages 419–
429. IEEE, 2007.

[64] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 265–278, Berkeley, CA,
USA, 2012. USENIX Association.

[65] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 265–278, 2012.

[66] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area storage with
cops. In Proceedings of the 23rd ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, pages 401–416, Cascais, Portugal, 2011.

[67] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Stronger semantics for low-latency geo-replicated storage. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI ’13, pages 313–328, 2013.

[68] Hewlett Packard Enterprise Development LP. HPE Edge Center. https:
//www.hpe.com/us/en/product-catalog/detail/pip.hpe-micro-datacenter.
1009483818.html.

[69] Josh Macdonald. Xdelta.

[70] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr
El Abbadi. Low-latency Multi-datacenter Databases Using Replicated Commit.
Proc. VLDB Endow., 6(9), July 2013.

[71] Friedemann Mattern. Virtual time and global states of distributed systems. In
PARALLEL AND DISTRIBUTED ALGORITHMS, pages 215–226. North-Holland,
1988.

[72] Kerry A McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha. Re-
port on lightweight cryptography. NIST DRAFT NISTIR, 8114, 2016.

[73] Christopher Meiklejohn and Peter Van Roy. Lasp: A language for distributed,
coordination-free programming. In Proceedings of the 17th International Sym-
posium on Principles and Practice of Declarative Programming, pages 184–195.
ACM, 2015.

LightKone D3.1(v2.0), January 15, 2019, Page 88

https://www.hpe.com/us/en/product-catalog/detail/pip.hpe-micro-datacenter.1009483818.html
https://www.hpe.com/us/en/product-catalog/detail/pip.hpe-micro-datacenter.1009483818.html
https://www.hpe.com/us/en/product-catalog/detail/pip.hpe-micro-datacenter.1009483818.html

BIBLIOGRAPHY

[74] Hein Meling, Alberto Montresor, Bjarne E. Helvik, and Ozalp Babaoglu.
Jgroup/arm: a distributed object group platform with autonomous replication man-
agement. Software: Practice and Experience, 38(9):885–923.

[75] Microsoft. Azure IoT reference architecture, 2018. http://download.microsoft.
com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/
Microsoft Azure IoT Reference Architecture.pdf.

[76] Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke, Nuno Preguiça,
and Rodrigo Rodrigues. Blotter: Low Latency Transactions for Geo-Replicated
Storage. In Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, pages 263–272, 2017.

[77] Achour MostÃ c©faoui and M Raynal. Causal multicasts in overlapping groups:
towards a low cost approach. pages 136 – 142, 10 1993.

[78] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11, pages 113–124, New York, NY, USA,
2011. ACM.

[79] David Navalho, Sérgio Duarte, and Nuno Preguiça. A Study of CRDTs that do
Computations. In Proceedings of the Workshop on Principles and Practice of
Consistency for Distributed Data, PaPoC ’15. ACM, 2015.

[80] Patrick E. O’Neil. The escrow transactional method. ACM Trans. Database Syst.,
11(4):405–430, December 1986.

[81] Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserving and
using context information in interprocess communication. ACM Trans. Comput.
Syst., 7(3):217–246, August 1989.

[82] Ravi Prakash, Michel Raynal, and Mukesh Singhal. An adaptive causal ordering
algorithm suited to mobile computing environments. J. Parallel Distrib. Comput.,
41(2):190–204, March 1997.

[83] Nuno M. Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte, Valter Bale-
gas, Carlos Baquero, and Marc Shapiro. Swiftcloud: Fault-tolerant geo-replication
integrated all the way to the client machine. In 33rd IEEE International Sympo-
sium on Reliable Distributed Systems Workshops, SRDS Workshops 2014, Nara,
Japan, October 6-9, 2014, pages 30–33. IEEE Computer Society, 2014.

[84] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-free replicated data
types. To appear in Encyclopedia of Big Data Technologies.

[85] Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction
and a simple way to implement it. Inf. Process. Lett., 39(6):343–350, October
1991.

[86] L. Rodrigues, J. Pereira, and J. Leitao. Epidemic broadcast trees. In Reliable
Distributed Systems, IEEE Symposium on(SRDS), volume 00, pages 301–310, 10
2007.

LightKone D3.1(v2.0), January 15, 2019, Page 89

http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf

BIBLIOGRAPHY

[87] Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Comput. Surv.,
37(1), March 2005.

[88] André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement
causal ordering. In Proceedings of the 3rd International Workshop on Distributed
Algorithms, pages 219–232, London, UK, UK, 1989. Springer-Verlag.

[89] André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement
causal ordering. In Proceedings of the 3rd International Workshop on Distributed
Algorithms, pages 219–232, London, UK, UK, 1989. Springer-Verlag.

[90] N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine partial replication in wide
area networks. In Proceedings of the 2010 IEEE 29th International Symposium
on Reliable Distributed Systems, SRDS ’10, pages 214–224, New Delhi, Punjab,
India, 2010.

[91] Nicolas Schiper and Fernando Pedone. Fast, flexible, and highly resilient genuine
fifo and causal multicast algorithms. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 418–422, New York, NY, USA, 2010.
ACM.

[92] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed Systems, SSS’11, pages 386–400,
Berlin, Heidelberg, 2011. Springer-Verlag.

[93] Ali Shoker, Houssam Yactine, and Carlos Baquero. As secure as possible eventual
consistency: Work in progress. In Proceedings of the 3rd International Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC ’17, pages
5:1–5:5, New York, NY, USA, 2017. ACM.

[94] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector
clocks. Inf. Process. Lett., 43(1):47–52, August 1992.

[95] Delta Power Solutions. Micro Data Center. http://www.deltapowersolutions.
com/en/mcis/data-center-solutions-micro-datacenter.php.

[96] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
storage for geo-replicated systems. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, pages 385–400, New York,
NY, USA, 2011. ACM.

[97] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
storage for geo-replicated systems. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, pages 385–400, 2011.

[98] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. Ad-
vances in Cryptology-ASIACRYPT 2010, pages 377–394, 2010.

[99] Pat Stephenson and Kenneth Birman. Fast causal multicast. SIGOPS Oper. Syst.
Rev., 25(2):75–79, April 1991.

LightKone D3.1(v2.0), January 15, 2019, Page 90

http://www.deltapowersolutions.com/en/mcis/data-center-solutions-micro-datacenter.php
http://www.deltapowersolutions.com/en/mcis/data-center-solutions-micro-datacenter.php

BIBLIOGRAPHY

[100] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent B. Welch. Session guarantees for weakly consistent repli-
cated data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems (PDIS) 94, Austin, Texas, September 28-30, 1994,
pages 140–149. IEEE Computer Society, 1994.

[101] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based Service
Level Agreements for Cloud Storage. In Proc. 24th ACM Symposium on Operat-
ing Systems Principles, SOSP ’13, 2013.

[102] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical report,
Australian National University, 1998.

[103] Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas. Efficient
Reconciliation and Flow Control for Anti-entropy Protocols. In LADIS, 2008.

[104] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tolerating
byzantine faults in transaction processing systems using commit barrier schedul-
ing. SIGOPS Oper. Syst. Rev., 41(6):59–72, October 2007.

[105] Werner Vogels. Eventually Consistent. Commun. ACM, 52(1), January 2009.

[106] Claes Wikström. Distributed programming in erlang. In the 1st International Sym-
posium on Parallel Symbolic Computation (PASCO 94), pages 412–421. World
Scientific, 1994.

[107] Georges Younes, Paulo Sérgio Almeida, and Carlos Baquero. Compact resettable
counters through causal stability. In Proceedings of the 3rd International Work-
shop on Principles and Practice of Consistency for Distributed Data, PaPoC ’17,
pages 2:1–2:3, New York, NY, USA, 2017. ACM.

[108] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.
Handling a Trillion (Unfixable) Flaws on a Billion Devices: Rethinking Network
Security for the Internet-of-Things. In Proc. of HotNets, 2015.

[109] Igor Zavalyshyn, Nuno O Duarte, and Nuno Santos. Homepad: Guardian of a
smart home galaxy.

[110] Marek Zawirski, Carlos Baquero, Annette Bieniusa, Nuno Preguiça, and Marc
Shapiro. Eventually consistent register revisited. In Proceedings of the 2Nd Work-
shop on the Principles and Practice of Consistency for Distributed Data, PaPoC
’16, pages 9:1–9:3, New York, NY, USA, 2016. ACM.

[111] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas,
and Marc Shapiro. Write fast, read in the past: Causal consistency for client-
side applications. In Proceedings of the 16th Annual Middleware Conference,
Middleware ’15, pages 75–87, Vancouver, BC, Canada, 2015.

LightKone D3.1(v2.0), January 15, 2019, Page 91

	Executive Summary
	Introduction
	Motivations, approach, and methodology
	Contributions
	LightKone Reference Architecture (LiRA)
	Data Abstractions at the Edge
	Communication support for data at the Edge
	Scalable data management at the edge
	Software deliverables
	Security analysis of use-cases
	Exploratory research

	Relation to other WPs
	Summary of Deliverable Revision
	Organization of the Report

	LightKone Reference Architecture (LiRA)
	Introduction
	Architecture View
	Component View
	Use-case View
	Distributed monitoring for community network (Guifi.net)
	Multi-cloud metadata search (Scality)
	Multi-master geo-distributed storage (Scality)
	NoStop RFID (Stritzinger)
	Precision agriculture (Gluk)

	Edge/Fog System Models and Terminology
	Taxonomy and Definitions
	Heavy Edge
	Light Edge
	Hybrid Edge

	Related Work
	OpenFog RA
	EdgeX
	ECC RA
	Azure IoT RA
	Amazon Greengrass RA

	Plan and Progress
	Plan and Milestones
	Plan followed in Year 1 (Y1)
	Plan for the first half of Year 2
	Plan for the second half of the project

	Data Abstractions at the Edge
	CRDTs: state-of-the-art and beyond
	Towards operation-based CRDTs at the edge
	State-based CRDTs at the edge

	Communication support for data at the Edge
	Tagged Causal Stable Broadcast (TCSB)
	Partisan
	Erlang Communication Support for Edge computing

	Scalable Data Management at the Edge
	Saturn
	Nonuniform replication
	Handoff counters
	Borrow Counters

	Software Deliverables
	Security Analysis of Use-cases
	Overview
	UPC - Guifi.net community network
	Coordination between servers & Data storage for the monitoring system
	Service provision support for the Cloudy platform

	Scality
	Pre-indexing at the edge
	Lambda functions at the edge
	S3 local cache of central data

	Stritzinger
	No-Stop RFID
	Smart Metering Gateway
	Swarm of Small Satellites

	Gluk - Agriculture Sensing Analytics

	Advancing State of the Art
	LightKone Reference Architecture (LiRA)
	CRDTs
	Communication support
	Causal Multicast
	Erlang distributed protocols
	Anti-entropy

	Partial and Non-uniform Replication

	Exploratory Research
	The Single-Writer Principle in CRDT Composition
	Security for the Edge
	Privacy-aware IoT Data Management
	As Secure as Possible Eventual consistency

	Annotated Publications & Dissemination
	Publications
	Dissemination

	Bibliography

